

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ON DISTRIBUTED STRATEGIES IN DEFENSE OF A HIGH
VALUE UNIT (HVU) AGAINST A SWARM ATTACK

by

Sze Yi Ding

September 2012

 Thesis Co-Advisors: Isaac Kaminer
 Johannes O. Royset

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE On Distributed Strategies in Defense of a High
Value Unit (HVU) Against a Swarm Attack

5. FUNDING NUMBERS

6. AUTHOR(S) Sze Yi Ding
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government .______N/A________

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Swarm attacks are of great concern to the U.S. Navy as well as to navies around the world and commercial
ships transiting through waters with high volume of marine traffic. A large group of hostile ships can hide
themselves among various other small ships, like pleasure crafts, fishing boats and transport vessels, and
can make a coordinated attack against a High Value Unit (HVU) while it passes by. The HVU can easily be
overwhelmed by the numbers and sustain heavy damage or risk being taken over.

The objective of this thesis is to develop heuristic algorithms that multiple defenders can use to
intercept and stop the advances of multiple attackers. The attackers are in much larger numbers compared
to the defenders, and are moving in on a slow moving HVU. Pursuit guidance laws and proportional
navigation (PN) guidance laws, commonly used in missile guidance strategies, are modified to be used by
the defenders to try intercepting attackers that outnumber them.

Another objective is to evaluate the effectiveness of the heuristic algorithms in defending the HVU
against the swarm attack. The probability that the HVU survives the swarm attack will be used as a
measure of effectiveness of the algorithms. The impact of various parameters, like the number of
defenders and the speed of defenders, on the effectiveness of the algorithms are also evaluated.

14. SUBJECT TERMS Swarm Attack, High Value Unit 15. NUMBER OF
PAGES

105
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ON DISTRIBUTED STRATEGIES IN DEFENSE OF A HIGH VALUE UNIT
(HVU) AGAINST A SWARM ATTACK

Sze Yi Ding
DSO National Laboratories (Singapore)

B.S.M.E., National University of Singapore, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2012

Author: Sze Yi Ding

Approved by: Isaac Kaminer
Thesis Co-Advisor

Johannes O. Royset
Thesis Co-Advisor

Knox T. Millsaps
Chair, Department of Mechanical and Aerospace
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Swarm attacks are of great concern to the U.S. Navy as well as to navies around

the world and commercial ships transiting through waters with high volume of

marine traffic. A large group of hostile ships can hide themselves among various

other small ships, like pleasure crafts, fishing boats and transport vessels, and

can make a coordinated attack against a High Value Unit (HVU) while it passes

by. The HVU can easily be overwhelmed by the numbers and sustain heavy

damage or risk being taken over.

The objective of this thesis is to develop heuristic algorithms that multiple

defenders can use to intercept and stop the advances of multiple attackers. The

attackers are in much larger numbers compared to the defenders, and are

moving in on a slow moving HVU. Pursuit guidance laws and proportional

navigation (PN) guidance laws, commonly used in missile guidance strategies,

are modified to be used by the defenders to try intercepting attackers that

outnumber them.

Another objective is to evaluate the effectiveness of the heuristic

algorithms in defending the HVU against the swarm attack. The probability that

the HVU survives the swarm attack will be used as a measure of effectiveness of

the algorithms. The impact of various parameters, like the number of defenders

and the speed of defenders, on the effectiveness of the algorithms are also

evaluated.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. PROBLEM STATEMENT ... 1
B. OBJECTIVES ... 1
C. LITERATURE REVIEW .. 2
D. THESIS ORGANIZATION .. 2

II. METHODOLOGY .. 5
A. SCENARIO .. 5
B. SIMULATION ... 5

1. High Value Unit (HVU) ... 6
2. Attackers .. 7
3. Defenders ... 8
4. Cost Function ... 9

C. SIMULATION PARAMETERS ... 15
1. Guidance Laws .. 15

a. Pursuit Guidance .. 15
b. PN Guidance .. 17

2. Number of Defenders .. 19
3. Speed Ratio .. 20
4. Test Matrix .. 20

III. RESULTS ANALYSIS .. 23
A. SIMULATION RESULTS ... 23

1. Guidance Strategies .. 23
2. Number of Defenders .. 28
3. Speed Ratio .. 30

IV. CONCLUSION AND RECOMMENDED FUTURE WORK 35
A. CONCLUSION ... 35
B. RECOMMENDED FUTURE WORK ... 35

1. Other Guidance Methods or Strategies 35
2. Different Engagement Scenarios ... 36
3. Intent Recognition ... 36
4. Hit Rate Function Modeling .. 37

APPENDIX A. MATLAB® SIMULATION CODE ... 39
A. SIMULATION RUN SCRIPT FILES ... 39
B. ATTACKER & DEFENDER TRAJECTORY GENERATION CODE .. 43
C. PERFORMANCE RELATED FUNCTIONS .. 57

LIST OF REFERENCES .. 85

INITIAL DISTRIBUTION LIST ... 87

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

 Motion of High Value Unit ... 7 Figure 1.
 Attackers trajectories .. 8 Figure 2.
 Defenders trajectories to intercept attackers .. 9 Figure 3.
 Hit rate function modeled using beta function in 3D 12 Figure 4.
 Hit rate of 𝑘-th defender against attacker ... 13 Figure 5.
 Angularly decaying rate function reflecting FOV limitations 14 Figure 6.
 Pursuit guidance with weightage on LOS vectors 17 Figure 7.
 Proportional Navigation guidance with weighted attacker centroid 19 Figure 8.
 Comparison of pursuit guidance and PN guidance 24 Figure 9.

 Typical engagement scenario using pursuit guidance 25 Figure 10.
 Pursuit guidance engagement scenario ... 26 Figure 11.
 Typical engagement scenario using PN guidance 27 Figure 12.
 Proportional Navigation guidance engagement scenario 28 Figure 13.
 Comparison for varying number of defenders 29 Figure 14.
 Comparison for varying speed ratios using pursuit and PN guidance 32 Figure 15.
 Effect of small but finite values of hit rate function on 𝑞𝑙𝑡 33 Figure 16.

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Scenarios to be simulated .. 22
Table 2. Measure of Effectiveness for pursuit guidance and PN guidance 24
Table 3. Measure of Effectiveness for varying number of defenders 29
Table 4. Measure of Effectiveness for pursuit guidance and PN guidance

with varying speed ratios .. 31

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

FOV Field of View

HVU High Value Unit

LOS Line-of-Sight

MOE Measure of Effectiveness

PN Proportional Navigation

UCSC University of California, Santa Cruz

USV Unmanned Surface Vehicles

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

The author wishes to thank Professor Isaac Kaminer for his guidance and

assistance in the completion of this thesis. Many thanks go to Professor

Johannes Royset for his insights and suggestions on how the thesis can

progress. Thanks to Claire Walton from UCSC for developing the algorithm and

cost function to evaluate the performance of the heuristic strategies used.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM STATEMENT

Since the attack on U.S.S. Cole in 2000 and the U.S.-Iranian naval dispute

in the Strait of Hormuz in 2008, awareness for asymmetric warfare has

increased. Swarm attacks, in particular, are of great concern to the U.S. Navy as

well as to navies around the world and commercial ships transiting through

waters with high volume of marine traffic. A large group of hostile ships can hide

themselves among various other small ships, like pleasure crafts, fishing boats

and transport vessels, and can make a coordinated attack against a High Value

Unit (HVU) while it passes by. The HVU can easily be overwhelmed by the

numbers and sustain heavy damage or risk being taken over.

The NPS thesis by Tiwari, 2008 [1] presented the capability gap in

defending against such a swarm attack. This thesis aims to study defensive

strategies that can be used to defend against swarm attacks, and evaluates the

mission effectiveness of these strategies using a cost function that can

realistically represent a multi-agent engagement scenario.

B. OBJECTIVES

The objective of this thesis is to develop heuristic algorithms that multiple

defenders can use to intercept and stop the advances of multiple attackers. The

attackers are in much larger numbers compared to the defenders, and are

moving in on a slow moving HVU. Pursuit guidance laws and proportional

navigation (PN) guidance laws, commonly used in missile applications, are

modified to be used by the defenders to try intercepting attackers that

outnumbers them.

Another objective is to evaluate the effectiveness of the heuristic

algorithms in defending the HVU against the swarm attack. The probability that

the HVU survives the swarm attack will be used as a measure of effectiveness of

 2

the algorithms. The impact of various parameters, like the number of defenders

and the speed of defenders, on the effectiveness of the algorithms are also

evaluated.

C. LITERATURE REVIEW

Various existing literature related to multi-agent engagement scenarios

usually focus on search algorithms. Chung et al, 2011 [2] looks at optimal

detection of underwater intruder in a channel using Unmanned Underwater

Vehicles. Royset & Sato, 2010 [3] considers route optimization for multiple

searchers to look for one or more probabilistically moving target(s). In these two

papers, there is only one target with multiple defenders searching for it. Jang &

Tomlin, 2005 [4], Shaferman & Oshman, 2009 [5], Shin, 2011 [6] investigates

various cooperative guidance strategies in multi-agent engagement scenarios,

but are mostly limited to missile guidance and considers scenarios with only 3 or

4 targets, defended with an equal number of defenders. Rozen, 2009 [7], studies

the detection, recognition and interception of multiple targets using an interdiction

force of a UAV and a navy vessel, but the number of targets are small and

moves at random and cannot be considered as a swarm. In addition, mission

effectiveness is based only on the number of targets considered intercepted

under conditions that are not reflective of real life situations.

This thesis explores strategies that naval ships can use to engage

attackers that greatly outnumbers themselves effectively, and uses a cost

function that considers the hit rate of the defenders against the attackers and the

attackers against the HVU, to work out the mission effectiveness by evaluating

the survival rate of the HVU.

D. THESIS ORGANIZATION

In the next chapter, the setup of the simulation is explained, describing the

parameters used to simulate the motion of the HVU, the attackers and the

defenders. The derivation of the cost function used to evaluate the mission

effectiveness of the algorithm will also be shown. A test matrix is formulated to

 3

investigate the effects of adjusting various parameters have on the defense

strategies. Analysis of the results obtained is presented in Chapter III, followed

by the conclusion and recommendations for future work that can be done in this

area of research in Chapter IV.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. METHODOLOGY

A. SCENARIO

Consider a HVU, like an aircraft carrier or a supply container ship, moving

through waters with a high number of small ships in the region. Some of these

small ships may have no hostile intent, but hidden amongst them are a group of

ships that are intending to attack the HVU. When the HVU passes by their

location, these hostile ships can launch a coordinated attack against the HVU.

They maneuver towards HVU at the same time, and in large numbers. This is

what we consider as a swarm attack. The attackers may be equipped with small

caliber guns and some may carry explosive with the intent of conducting a

suicide attack. The HVU detects these attackers on its radar and determines that

it is under imminent attack based on the number of contacts moving towards its

location at high speed. The HVU then deploys multiple Unmanned Surface

Vehicles (USVs) equipped with weaponry, to intercept and neutralize these

attackers before they can get close enough to become a threat. The number of

USVs (defenders) deployed is small compared to the number of attackers.

B. SIMULATION

The above scenario is simulated using MATLAB®. The setup of the

scenarios to be studied is to be based upon real life platforms and weapons

systems to give a realistic model and therefore a representative simulation of

actual hostile engagement scenarios. Current Fast Attack Crafts (FAC) and Fast

Inshore Attack Crafts (FIAC) have max speeds in excess of 40 knots (~20 m/s).

As such, the attackers are modeled to have max speeds of 45 knots (~23 m/s),

while varying top speeds for defenders between 20 knots (~10m/s) to 60knots

(~30 m/s) will be investigated. The hostile crafts are assumed to be armed with

small caliber guns, or carrying explosives for suicidal attacks. The maximum

effective ranges of these types of weapons do not exceed 1 nmi (~1.8 km).

Therefore, to be able to intercept the hostile targets before they get within

 6

effective range of their weapons, the defenders have to intercept these hostile

targets at least 1nmi from the HVU. At the lowest defender speed we will be

investigating, the defenders will take about 3 minutes to travel 1 nmi. During this

time, the attackers can travel upwards of 2.25 nmi. In other words, the defenders

have to be deployed to intercept these hostile targets at least 3.25 nmi from the

HVU. For the simulations, the attackers will start at 4.25 nmi (~8 km) away from

the HVU to provide a margin of safety. Modern sensors systems carried by Naval

Fighting Ships can detect targets as far away as 100 to 200 km. So detecting

these targets would not be a problem at all. The weapon systems carried by the

defenders will be small to medium caliber guns having max effective ranges from

1nmi (~1800 m) to about 2 nmi (~3700 m).

A cost function is developed that will allow us to evaluate the effectiveness

of the defense strategies by calculating the probability of the HVU surviving the

swarm attack. We can vary some of the parameters used in the scenario to look

at how some of these parameters affect the survival rate of the HVU. Some of

the parameters we are going to look at are, guidance laws used by the defenders

to track the attackers, the number of defenders and the speed ratio of the

defenders to attackers.

The following paragraphs will explain how the simulation is set up to

simulate the motions of the HVU, attackers and defenders, as well as the

describing the guidance laws used by the defenders. Following which, a matrix of

scenarios is formed to explore the effects of varying parameters in the simulation.

1. High Value Unit (HVU)

The HVU is simulated to be a relatively slow moving vessel with limited

maneuvering capabilities. In the simulation, the HVU will start at the origin (0, 0),

and moves at a constant velocity of 5 m/s in a straight line directly to the north (in

the positive y direction). The HVU is assumed to have detected the hostile

targets at a distance away and is starting to deploy its defensive force of USVs.

The HVU will not be taking evasive actions to avoid the attackers in this

 7

simulation, since it cannot outmaneuver the attackers anyway. The HVU has to

depend on the defensive force and onboard defensive capabilities to fend off the

attack.

Figure 1 shows a plot of the HVU motion in two-dimensional space over

the total simulation time, T.

 Motion of High Value Unit Figure 1.

2. Attackers

The initial positions of the 40 attackers are randomly generated with

uniform distribution over a rectangular area to the east of the HVU (positive x-

direction). This area spans from x = 8000 to x = 8100, and y = 0 to y = 500. The

attackers’ trajectories are generated using a time-coordinated path following

control architecture described in Ghabcheloo et al, 2009[8], with their speeds

constrained to a maximum of 23m/s. The trajectories thus generated are

collision-free, and ensures that the attackers reach the HVU at the same time for

a coordinated attack. The attacker are assumed to ignore the defenders as they

try to intercept them, as they will be focused on the task at hand to destroy the

HVU using a suicidal attack.

 8

The weapons carried on these attacking crafts will be limited to small and

medium caliber guns, as well as explosives, all of which having effective ranges

of no more than 1800m.

Figure 2 shows the typical trajectories of 40 attackers in a coordinate

attack against the HVU.

 Attackers trajectories Figure 2.

3. Defenders

The defenders are simulated to be moving in formation alongside the

HVU, and are deployed simultaneously to intercept the incoming attackers. They

will start moving towards the attackers at their maximum speeds as soon as they

are deployed. A divide and conquer tactic will be used, where each defender will

be assigned a group of attackers to intercept and neutralize. The defenders will

use either modified PN guidance law or pursuit guidance law to guide them

towards the group of assigned attackers. The guidance laws used will be

discussed in more detail later in this chapter.

The field of view (FOV) for these defenders will be ±60⁰ from their

heading. When an attacker is within the defenders’ FOV and weapons’ effective

range, the defenders will shoot at the attackers in an attempt to neutralize it. If

 9

there are multiple attackers within the defender’s sight, the defender will divide its

attention evenly to each of these attackers that are in sight. This is to ensure that

the defender can neutralize as many attackers as it can before the attackers

maneuvers past it.

Figure 3 shows a typical engagement scenario where five defenders try to

intercept 40 attackers that are coming to attack the HVU.

 Defenders trajectories to intercept attackers Figure 3.

4. Cost Function

The effectiveness of the defense strategy is evaluated by estimating the

probability of the HVU surviving the swarm attack. A cost function, developed by

Claire Walton from UCSC [9], derives the probability that the HVU has survived

until time 𝑡 + ∆𝑡 using conditional probabilities. This probability can be

represented as

𝑝(𝑡 + ∆𝑡) = 𝑝(𝑡) ∙ 𝑓(𝑡,∆𝑡) (2.1)

where 𝑓(𝑡,∆𝑡) is the probability that the HVU survived in the time interval

[𝑡, 𝑡 + ∆𝑡]. By modeling the function 𝑓(𝑡,∆𝑡), a differential equation for 𝑝(𝑡) can

be obtained by taking the limit, ∆𝑡 → 0.

 10

To formulate the function 𝑓(𝑡,∆𝑡), let us first consider a single defender

protecting a HVU from a single attacker. Let 𝑝(𝑡) be the probability that the HVU

survived until time 𝑡. The goal is to maximize the value of 𝑝(𝑇) at the end of the

simulation when 𝑡 = 𝑇.

Let:

• 𝑞(𝑡) = the probability that the attacker survived to time 𝑡

• 𝑠𝑎(𝑡) = instantaneous attacker hit rate against HVU

• 𝑠𝑑(𝑡) = instantaneous defender hit rate against attacker

The probability of the attacker surviving until time 𝑡 + ∆𝑡 can be expressed

as

𝑞(𝑡 + ∆𝑡) = 𝑞(𝑡)(1 − 𝑠𝑑(𝑡)∆𝑡) (2.2)

This creates the differential equation

𝑞̇(𝑡) = −𝑞(𝑡)𝑠𝑑(𝑡) (2.3)

Solving this equation yields

𝑞(𝑡) = 𝑒−∫ 𝑠𝑑(𝜏)𝑑𝜏𝑡
0 (2.4)

The effective attackers hit rate against the HVU at time 𝑡, given that the

attacker survived until that time, is therefore 𝑞(𝑡)𝑠𝑎(𝑡). The probability that the

HVU surviving until time 𝑡 + ∆𝑡 can then be expressed in a similar fashion to 𝑞(𝑡),

𝑝(𝑡 + ∆𝑡) = 𝑝(𝑡)(1 − 𝑞(𝑡)𝑠𝑎(𝑡)∆𝑡) (2.5)

which yields

𝑝(𝑡) = 𝑒−∫ 𝑞(𝜏)𝑠𝑎(𝜏)𝑑𝜏𝑡
0 (2.6)

Substitution of 𝑞(𝑡) into this expression and evaluating to time 𝑇, we obtain the

cost function,

 11

 𝑝(𝑇) = 𝑒−∫ 𝑒−∫ 𝑠𝑑(𝜔)𝑑𝜔𝑇
0 𝑠𝑎(𝜏)𝑑𝜏𝑇

0 (2.7)

To expand this to a multi-agent engagement scenario, the same method

can be applied, but the hit rate of each defender against each attacker has to be

considered. To do this, we define the following terms

• 𝑞𝑙(𝑡) = the probability that the attacker 𝑙 survived to time 𝑡

• 𝑠𝑎,𝑙(𝑡) = 𝑙-th attacker hit rate against HVU

• 𝑠𝑑,𝑘(𝑡) = 𝑘-th defender hit rate against attacker

Now, the probability that the 𝑙-th attacker survives until time 𝑡 is

𝑞𝑙(𝑡 + ∆𝑡) = 𝑞𝑙(𝑡)��1 − 𝑠𝑑,𝑘(𝑡)∆𝑡�
𝐾

𝑘=1

 (2.7)

this yields

𝑞𝑙(𝑡) = 𝑒−∫ ∑ 𝑠𝑑,𝑘(𝜏)𝐾
𝑘=1 𝑑𝜏𝑡

0 (2.8)

Similarly, we write for the HVU,

𝑝(𝑡 + ∆𝑡) = 𝑝(𝑡)��1 − 𝑞𝑙(𝑡)𝑠𝑎,𝑙(𝑡)∆𝑡�
𝐿

𝑙=1

 (2.9)

This can be made into a differential equation if we expand the product and

discard higher order terms of ∆𝑡,

𝑝(𝑡 + ∆𝑡) = 𝑝(𝑡) + ��1 −�𝑞𝑙(𝑡)𝑠𝑎,𝑙(𝑡)∆𝑡
𝐿

𝑙=1

+ ℎ. 𝑜. 𝑡.� − 1� 𝑝(𝑡) (2.10)

𝑝(𝑡 + ∆𝑡) = 𝑝(𝑡) + �−�𝑞𝑙(𝑡)𝑠𝑎,𝑙(𝑡)∆𝑡
𝐿

𝑙=1

+ ℎ. 𝑜. 𝑡. � 𝑝(𝑡) (2.11)

 12

The differential equation can then be written

𝑝̇(𝑡) = �−�𝑞𝑙(𝑡)𝑠𝑎,𝑙(𝑡)
𝐿

𝑙=1

� 𝑝(𝑡) (2.12)

and the solution evaluated to time 𝑇 is

𝑝(𝑇) = 𝑒−∫ �∑ 𝑞𝑙(𝑡)𝑠𝑎,𝑙(𝑡)𝐿
𝑙=1 �𝑑𝜏𝑇

0 (2.13)

The 𝑙-th attacker hit rate against the HVU is modeled using a beta function, with

positive parameters 𝛼,𝛽 ≥ 2. The function can be connected smoothly (C1) as a

piecewise function,

𝑠𝑎,𝑙�𝑟(𝑡)� = �𝑟(𝑡)𝛼�1 − 𝑟(𝑡)�𝛽 , 0 ≤ 𝑟(𝑡) ≤ 1
0 , 𝑒𝑙𝑠𝑒

 (2.14)

where 𝑟(𝑡) is the range of the attacker to the HVU. The parameters are adjusted

to reflect the hit rate of the attackers’ weaponry against the HVU. In the

simulations, the range of this hit rate is limited to 800m. Figure 4 shows an

example of the hit rate function modeled with the beta function.

 Hit rate function modeled using beta function in 3D Figure 4.

 13

As for the defenders’ hit rate against the attackers, the weapons carried by

the defenders are assumed to be small to medium caliber guns. The maximum

effective ranges of such weapons are expected to be around 1800m to 3700m.

The peak effectiveness of the weapon is expected to occur at a range of around

100 to 200m from the defender. This is because if the attacker is any closer to

the defender, the LOS rate to the attacker is going to be very high, especially for

a cross-range engagement scenario. Limitations of the swiveling rate of the guns

will make it hard to keep up with the moving attackers. The hit rate will also

decrease from the peak value at 100–200m at an exponential rate. This reflects

the fact that the lethality of the shells fired at the attackers reduces with

increasing distance travelled. Accuracy of the shells also decreases with

increasing range due to wind and weapon recoil. Figure 5 shows the expected hit

rate function.

 Hit rate of 𝑘-th defender against attacker Figure 5.

The hit rate function shown here is modeled with a lognormal probability

distribution curve. Note that the hit rate function modeled this way does not have

a finite range like the beta functions have. The value decreases to a very small,

but finite value at very large range. This leads to some unexpected results, which

will be discussed later in the results section.

To simulate the limited FOV of the weapon system, the hit rate function is

modified with an angularly decaying multiplier, which decreases with arc angle.

 14

Figure 6 shows the multiplier function with such FOV limitations in three-

dimensional space.

 Angularly decaying rate function reflecting FOV limitations Figure 6.

Another situation the hit rate function should account for is the fact that

when multiple attackers are within a single defender’s FOV, the defender’s

attention is divided between the attackers. This division of attention can be

simulated by dividing the hit rate function by another function that smoothly

approximates the number of attackers in its FOV. We can define

• 𝑥𝑘 = the location of the 𝑘-th defender

• 𝑥𝑙 = the location of the 𝑙-th attacker

The following sum of Gaussian distributions can then be used as the division

function,

�Φ�
𝜌 − ‖𝑥𝑘 − 𝑥𝑙‖

𝜎
�

𝐿

𝑙=1

 (2.15)

with the standard deviation 𝜎 set to a small number, to approximate the number

of attackers within a radius 𝜌 of the 𝑘-th defender.

 15

C. SIMULATION PARAMETERS

In this section, we look at the various parameters in the simulation that

can influence the effectiveness of the defensive force. We will look at three

parameters, the guidance strategy the defenders use to intercept the attackers,

the number of defenders deployed and the speed ratio of the defenders’ speed to

the attackers’ speed.

1. Guidance Laws

Here, we are going to look at two guidance laws. One is based on pursuit

guidance and the other is based on proportional navigation (PN) guidance.

Pursuit guidance and PN guidance are common guidance laws used in missile

guidance. Zarchan [10] describes these guidance laws in detail. Modern missiles

use more complex forms of guidance laws, but in this thesis, we are only going to

look at the basic pursuit and PN guidance laws for a start. In a nutshell, pursuit

guidance generates turn commands that points the defender to the line-of-sight

(LOS) to the attacker, while PN guidance generates turn commands proportional

to LOS rate to form an intercept triangle to intercept the attacker along its path of

motion. Both of LOS angle and LOS rate can be easily obtained from EO seekers

that can be equipped on a USV.

a. Pursuit Guidance

In the simulation, pursuit guidance is implemented by having a

defender change its heading to face directly at the attacker. This is akin to giving

a turn command that will turn the defender an amount equal to the LOS angle in

a single time step. This simplifies calculation and implementation, as we only

need to find the LOS vector. When the defender is up against a swarm of

attackers, the pursuit guidance law is not going to work in its basic form, as we

have multiple LOS vectors instead of just one. Therefore, for the defender to use

the guidance law, all the LOS vectors are combined into one “effective” vector

that the defender will use. This combination can be achieved by finding a

 16

weighted sum of the LOS vectors. We consider that in a real life engagement

scenario, priority should be given to attackers that the defenders can reach first.

In the simulation, we have the following information

• 𝑷𝒅 = �
𝑥𝑑
𝑦𝑑� = the position of the defender

• 𝑷𝒂,𝒍 = �
𝑥𝑎,𝑙
𝑦𝑎,𝑙

� = the position of the 𝑙-th attacker

• 𝑽𝒅 = �𝑥̇𝑑𝑦̇𝑑
� = the velocity of the defender

• 𝑽𝒂,𝒍 = �
𝑥̇𝑎,𝑙
𝑦̇𝑎,𝑙

� = the velocity of the 𝑙-th attacker

From this we can obtain

• 𝑑𝑙, the distance of the defender to the 𝑙-th attacker

𝑑𝑙 = �𝑷𝒅 − 𝑷𝒂,𝒍� (2.16)

• 𝒊𝒂,𝒍, the unit LOS vector of the defender to the 𝑙-th attacker

𝒊𝒂,𝒍 = �𝑷𝒅 − 𝑷𝒂,𝒍� 𝑑𝑙⁄ (2.17)

• 𝑣𝑗 is the closing velocity of the defender to the 𝑙-th attacker

𝑣𝑙 = 𝒊𝒂,𝒍
𝑻�𝑽𝒅 − 𝑽𝒂,𝒍� (2.18)

Therefore, the unit velocity vector of the defender,

𝒊𝒅 =
∑ 𝑣𝑙

𝑑𝑙
𝐿
𝑙=1 𝒊𝒂,𝒍

∑ 𝑣𝑙
𝑑𝑙

𝐿
𝑙=1

�
∑ 𝑣𝑙

𝑑𝑙
𝐿
𝑙=1 𝒊𝒂,𝒍

∑ 𝑣𝑙
𝑑𝑙

𝐿
𝑙=1

�� (2.19)

This places priority on the attacker that the defender can reach in

the shortest time, since 𝑣𝑙
𝑑𝑙

= 1
𝑡𝑙

 where 𝑡𝑙 is the time to reach the 𝑙-th attacker

based on a straight-line intercept course of the defender to the attacker along the

LOS vector. The lower the time, 𝑡𝑙 is, the higher the weightage will be for the 𝑙-th

attacker. Figure 7 illustrates this method.

 17

 Pursuit guidance with weightage on LOS vectors Figure 7.

Note that only the attackers that are within the FOV of the

defenders, as denoted by the shaded triangle in the figure, are included in the

computation.

b. PN Guidance

For PN guidance, a turn command is generated that is proportional

to the LOS rate of the attacker. This puts the defenders on an intercept triangle

where the defender will intercept the attacker along its path of motion. As we

have multiple attackers in this case, we need to come up with a single turn

command for the defender such that it will track the general swarm movement,

while giving priority to the closest threat. One possible way to implement PN

guidance for multiple attackers is to compute the centroid of the attacker in the

defender’s FOV, as well as the effective velocity of that centroid, and apply PN

 18

guidance to intercept this moving centroid. This centroid is to be weighted by the

closing velocity and distance to each attacker to give priority to attackers with

lower intercept times. To do this we can find

The centroid of attackers in defender’s FOV,

𝑷𝒂 = �
𝑥𝑎
𝑦𝑎� = �

𝑣𝑙
𝑑𝑙

𝐿

𝑙=1

𝑷𝒂,𝒍 �
𝑣𝑙
𝑑𝑙

𝐿

𝑙=1

� (2.20)

and the velocity of this centroid,

𝑽𝒂 = �𝑥̇𝑎𝑦̇𝑎
� = �

𝑣𝑙
𝑑𝑙

𝐿

𝑙=1

𝑽𝒂,𝒍 �
𝑣𝑙
𝑑𝑙

𝐿

𝑙=1

� (2.21)

From which, we find

• 𝑑𝑎, the distance of the defender to the attacker centroid

𝑑𝑎 = ‖𝑷𝒅 − 𝑷𝒂‖ (2.22)

• 𝒊𝒂, the unit LOS vector of the defender to the attacker

centroid

𝒊𝒂 = �cos𝜃𝑎
sin𝜃𝑎

� = (𝑷𝒅 − 𝑷𝒂) 𝑑𝑎⁄ (2.23)

Now, we can obtain the LOS rate by

𝜃𝑎̇ =
(𝑥̇𝑑 − 𝑥̇𝑎) sin𝜃𝑎 − (𝑦̇𝑑 − 𝑦̇𝑎) cos𝜃𝑎

𝑑𝑎
 (2.24)

The turn command needed, 𝜔𝑐, is then calculated by

𝜔𝑐 = 𝐾𝜃𝑎̇ (2.25)

with the gain of the PN guidance law, 𝐾 = 6

Figure 8 illustrates this method.

 19

 Proportional Navigation guidance with weighted attacker centroid Figure 8.

Again, note that only attackers within the defender’s FOV is

included in the computation of the required turn rate.

2. Number of Defenders

By increasing the number of defenders we have against a swarm, we can

expect the defenders to take down more attackers before they can get to the

HVU. Hence, the chances of survival of the HVU can be expected to improve

with increasing number of defenders. However, we can also expect that there

would be some sort of diminishing return, where at some point, increasing the

number of defenders is not going to increase the HVU survival rate significantly.

The number of defenders deployed will be varied from 1 to 25.

 20

3. Speed Ratio

The speed of the defenders will determine where they can first intercept

the incoming attackers. It also affects the amount of time that the defenders have

on the target. We would not want the defenders to intercept the attackers too

late. Otherwise, they can be close enough to the HVU to pose a threat. However,

we would not want the defenders to be moving so fast that they cannot target the

attackers long enough to take them down. The speeds of the defenders will be

varied from 10m/s to 30 m/s (about 19knots to 58knots), while the attackers’

speed will be kept at 23 m/s (45knots). This corresponds to speed ratios between

0.4348 and 1.304.

4. Test Matrix

In each of these scenarios, 50 randomly generated attacker trajectories

will be evaluated to obtain an average performance of the defense strategy used.

This is to make sure that the performance of the defense strategy is not a limited

to a specific attacker trajectory. The MATLAB® source code written for the

simulation is documented in Appendix A of this thesis.

Table 1 summarizes the scenarios that are simulated.

 21

Parameter Number of
defenders

Number of
attackers

Speed of
defenders

(m/s)

Speed of
attackers

(m/s)

Guidance
Law used

Guidance
Law

1 40 25 23 Pursuit
2 40 25 23 Pursuit
3 40 25 23 Pursuit
4 40 25 23 Pursuit
5 40 25 23 Pursuit
1 40 25 23 PN
2 40 25 23 PN
3 40 25 23 PN
4 40 25 23 PN
5 40 25 23 PN

of
Defenders

6 40 25 23 PN
7 40 25 23 PN
8 40 25 23 PN
9 40 25 23 PN

10 40 25 23 PN
15 40 25 23 PN
20 40 25 23 PN
25 40 25 23 PN

Speed
Ratio

5 40 10 23 PN
5 40 11 23 PN
5 40 12 23 PN
5 40 13 23 PN
5 40 14 23 PN
5 40 15 23 PN
5 40 16 23 PN
5 40 17 23 PN
5 40 18 23 PN
5 40 19 23 PN
5 40 20 23 PN
5 40 21 23 PN
5 40 22 23 PN
5 40 23 23 PN
5 40 24 23 PN
5 40 25 23 PN
5 40 30 23 PN

 22

Parameter Number of
defenders

Number of
attackers

Speed of
defenders

(m/s)

Speed of
attackers

(m/s)

Guidance
Law used

Speed
Ratio

5 40 10 23 Pursuit
5 40 11 23 Pursuit
5 40 12 23 Pursuit
5 40 13 23 Pursuit
5 40 14 23 Pursuit
5 40 15 23 Pursuit
5 40 16 23 Pursuit
5 40 17 23 Pursuit
5 40 18 23 Pursuit
5 40 19 23 Pursuit
5 40 20 23 Pursuit
5 40 21 23 Pursuit
5 40 22 23 Pursuit
5 40 23 23 Pursuit
5 40 24 23 Pursuit
5 40 25 23 Pursuit
5 40 30 23 Pursuit

Table 1. Scenarios to be simulated

 23

III. RESULTS ANALYSIS

A. SIMULATION RESULTS

The measure of effectiveness (MOE) used to evaluate the performance of

the defense strategy used is the probability of the HVU surviving the swarm

attack at the end of the simulation, 𝑝(𝑇). The larger the objective value is, the

more effective the defense strategy is. The values that 𝑝(𝑇) can take are

between 0 and 1, with 𝑝(𝑇) = 0 meaning that the HVU is guaranteed to be

destroyed in the swarm attack and 𝑝(𝑇) = 1 meaning that the HVU is guaranteed

to survive the swarm attack.

In this chapter, we look at the performance of various strategies with

varying parameters as described in Chapter II Section C, and analyze whether

the simulation is sufficiently describing the engagement scenario. In all scenarios

simulated, there will be 40 attackers, each having a maximum speed of 23m/s.

50 sets of initial attacker positions are generated randomly using uniform

distribution over an area from x = 8000 to x = 8100, and y = 0 to y = 500. This

corresponds to 50 different sets of attacker trajectory. The simulation will be

repeated using the same 50 sets of attacker position for each of the cases to be

simulated, and the mean of the MOE obtained from the 50 simulations will be

used as the basis for comparison between cases.

1. Guidance Strategies

The performance of pursuit guidance is compared to that of PN guidance,

with the number of defenders between 1 and 5. The speed of the defenders is

kept at 25m/s, corresponding to a speed ratio of 1.1. The slight advantage in

speed for the defenders is to allow the guidance laws to perform better against

the attackers. Table 2 summarizes the objective values obtained and Figure 9

plots the values for comparison.

 24

Parameter
Number

of
defenders

Guidance
Law used

MOE

Mean Standard
deviation

Guidance Law

1 Pursuit 0.000314 0.002160
2 Pursuit 0.092827 0.041404
3 Pursuit 0.939744 0.011297
4 Pursuit 0.997371 0.000407
5 Pursuit 0.999848 0.000029
1 PN 0.000000 0.000000
2 PN 0.074510 0.057751
3 PN 0.171997 0.282923
4 PN 0.222126 0.294244
5 PN 0.239250 0.301488

Table 2. Measure of Effectiveness for pursuit guidance and PN guidance

 Comparison of pursuit guidance and PN guidance Figure 9.

The comparison between pursuit guidance and PN guidance yields a

rather surprising result. Pursuit guidance, which is usually considered inferior to

PN guidance in missile applications, seems to perform better, needing only three

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

0 1 2 3 4 5 6

Pr
ob

ab
ili

ty
 o

f H
VU

 su
rv

iv
in

g,
 p

(T
)

Number of Defenders

Comparison of Pursuit Guidance and PN Guidance

Pursuit Guidance PN Guidance

 25

defenders to obtain a MOE of about 0.94. In other words, the HVU survives 94%

of the time when three defenders are used against a swarm of 40 attackers.

Comparatively, PN guidance can only achieve a MOE of about 0.24 with five

defenders, meaning the HVU survives only about 24% of the time. The reason

for this result is obvious when we look at the trajectory of the defenders. Figure

10 shows a typical engagement scenario when pursuit guidance is used.

 Typical engagement scenario using pursuit guidance Figure 10.

As can be seen in the engagement scenario, the defenders will always

end up in a tail chase against the attackers. This is to be expected when pursuit

guidance is used. However, unlike missile engagement scenarios, the probability

of neutralizing the attackers does not depend on how close the defenders can

get to the attackers, but rather on the time on target that the defenders have.

Once the defenders get behind the attackers, the attackers are effectively

Defender’s motion

Attacker’s motion

Defender’s FOV

 26

constantly within the defenders’ FOV and attacking range. Therefore, the

probability of the attackers being neutralized increases greatly.

Figure 11 shows the engagement scenario where five defenders are

deployed against a swarm of 40 attackers using pursuit guidance. It can be seen

from the plot that the defenders were able to neutralize all 40 attackers before

they can reach the HVU by coming up behind them and shooting them down.

 Pursuit guidance engagement scenario Figure 11.

PN guidance, on the other hand, gives rise to an engagement scenario

where the attackers are going to pass in front of the defenders and out of their

FOV in a relatively short period. Since the defenders will stop once no attackers

are within their FOV, they will not give chase to the attackers from behind. This

limits the amount of time the defenders have in dealing with the attackers, and

subsequently results in a smaller chance of neutralizing the attackers. A typical

engagement scenario using PN guidance is shown in Figure 12.

 27

 Typical engagement scenario using PN guidance Figure 12.

We can see from this engagement scenario that if attackers are able to

get pass the defenders, they can reach the HVU without any hindrance, resulting

in high probabilities of HVU being destroyed. Figure 13 shows the engagement

scenario where five defenders are deployed against a swarm of 40 attackers

using PN guidance. The scenario shows that some of the attackers were able to

get past the defenders because of the short time period they were passing into

the FOV of the defenders.

Defender’s motion

Attacker’s motion

Defender’s FOV

 28

 Proportional Navigation guidance engagement scenario Figure 13.

2. Number of Defenders

When the number of defenders is increased, each defender will have

fewer attackers to deal with. Hence, the defenders should be able to neutralize

the attackers with greater ease. To compare the effects of increasing the number

of defenders, we vary the number of defenders from 1 to 25. The speed ratio is

kept at 1.1 for each of the simulation run. Table 3 summarizes the objective

values obtained and Figure 14 plots the values for comparison.

The plot shows that increasing the number of defenders does indeed

improve the chances that the HVU survives. One observation here is that the

MOE increases almost proportionally with the increase of defenders, up to 10

defenders when the probability of HVU surviving increases up to around 0.94.

Increasing the number of defenders beyond 10 gives diminishing returns, with

the probability increasing slightly to 0.9978 with 15 defenders (a 99.78% chance

of HVU surviving). We can deduce from this result that each defender can take

down four attackers efficiently in this particular engagement scenario. Any

additional defenders may just mean that defenders are idling after defeating their

own share of attackers, thus reducing the utility of these defenders.

 29

Parameter
Number

of
defenders

MOE

Mean Standard
deviation

of
Defenders

1 0.000000 0.000000
2 0.074510 0.057751
3 0.171997 0.282923
4 0.222126 0.294244
5 0.239250 0.301488
6 0.434544 0.334362
7 0.497450 0.314897
8 0.698302 0.213622
9 0.827713 0.134149

10 0.935115 0.065392
15 0.997801 0.001932
20 0.999950 0.000038
25 0.999998 0.000002

Table 3. Measure of Effectiveness for varying number of defenders

 Comparison for varying number of defenders Figure 14.

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

0 5 10 15 20 25 30Pr
ob

ab
ili

ty
 o

f H
VU

 su
rv

iv
in

g,
 p

(T
)

Number of Defenders

Effect of Number of Defenders

 30

3. Speed Ratio

The speed of the defenders is now varied between 10m/s and 30m/s. With

the attackers’ speed at 25m/s, this corresponds to speed ratios between 0.4348

and 1.3043. Five defenders are deployed in each case. Both pursuit guidance

and PN guidance are evaluated for their effectiveness at the different speed

ratios. Table 4 summarizes the objective values obtained and Figure 15 plots the

values for comparison.

The MOE when PN guidance is used does not seem to have a significant

difference, statistically speaking, when the speed ratio is above 0.74. However,

the defenders generally seemed to perform better at lower speed ratios between

0.65 and 0.70. A probable reasoning behind this is that at lower speed ratios, the

attackers remain within the defenders’ FOV for a longer time, allowing longer

dwell times for the defenders to neutralize the attackers. Having said that though,

the attackers are expected to be intercepted and neutralized at a distance closer

to the HVU when the speed ratio is lower. This means the safety margin is

smaller and the HVU may come under fire if the attackers carry weapons with

longer range. At even lower speed ratios, we can see that the performance

decreases dramatically. One possible reason is that at lower speeds, the

defenders have to aim at a point far ahead of the attacker to be able to intercept

the attackers using PN guidance. If they do that though, the attackers may be at

the edge of their FOV, lowering their hit rate against the attackers. The attackers

may be even out of the FOV of the attackers if the speed of the defender is low

enough, and the defenders will be unable to shoot at the attackers.

On the other hand, when pursuit guidance is used, a surprising result is

obtained. The MOE for simulated speed ratios between about 0.4348 and 1.304

when pursuit guidance is used is either 1 or close to one. This means that the

HVU is almost guaranteed to survive regardless of the speed of the defenders.

Additional simulations are run at speeds of 5m/s, 1m/s and 0.01m/s,

corresponding to speed ratio of 0.2174, 0.0435 and 0.0004 respectively.

 31

Parameter Guidance
Law used

Speed of
Defenders

(m/s)

Speed
Ratio

MOE

Mean Standard
Deviation

Speed
Ratio

PN

10 0.4348 0.000 0.000
11 0.4783 0.000 0.000
12 0.5217 0.000 0.000
13 0.5652 0.000 0.000
14 0.6087 0.020 0.004
15 0.6522 0.675 0.326
16 0.6957 0.571 0.377
17 0.7391 0.230 0.317
18 0.7826 0.246 0.300
19 0.8261 0.168 0.265
20 0.8696 0.283 0.295
21 0.9130 0.257 0.269
22 0.9565 0.344 0.302
23 1.0000 0.350 0.316
24 1.0435 0.207 0.258
25 1.0870 0.239 0.301
30 1.3043 0.144 0.230

Pursuit

0.01 0.0004 0.188 0.007
1 0.0435 0.872 0.004
5 0.2174 1.000 0.000

10 0.4348 1.000 0.000
11 0.4783 1.000 0.000
12 0.5217 1.000 0.000
13 0.5652 1.000 0.000
14 0.6087 1.000 0.000
15 0.6522 1.000 0.000
16 0.6957 0.996 0.000
17 0.7391 0.996 0.000
18 0.7826 0.999 0.000
19 0.8261 1.000 0.000
20 0.8696 1.000 0.000
21 0.9130 1.000 0.000
22 0.9565 1.000 0.000
23 1.0000 1.000 0.000
24 1.0435 1.000 0.000
25 1.0870 1.000 0.000
30 1.3043 0.973 0.125

Table 4. Measure of Effectiveness for pursuit guidance and PN guidance with
varying speed ratios

 32

 Comparison for varying speed ratios using pursuit and PN guidance Figure 15.

This is done to observe whether the MOE will remain high when the

defenders are almost stationary. The MOE only started decreasing at a speed

ratio of 0.0435. Even at an almost stationary speed of 0.01m/s, the MOE is at

0.188. What this means is that even if the defenders are barely moving, as long

as they used pursuit guidance against the attackers, the HVU can still survive

with an 18.8% chance.

The reason that we get such unrealistic MOE for pursuit guidance is the

way the defenders hit rate against the attackers is modeled. As described in

Chapter II section B.4, the hit rate function for the attackers is modeled with a

lognormal function. The way the lognormal function is shaped is such that the

value decreases gradually from a peak value in an exponential way. However,

the value does not go to zero even at very large values. In other words, there is a

small but finite value for the hit rate function that is being integrated by the part of

the cost function that calculates the survival rate of the attackers. Since pursuit

0.000000
0.100000
0.200000
0.300000
0.400000
0.500000
0.600000
0.700000
0.800000
0.900000
1.000000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Pr
ob

ab
ili

ty
 o

f H
VU

 su
rv

iv
in

g,

p(
T)

Speed ratio (Defender/Attacker)

Speed ratio comparisons

Pursuit Guidance PN Guidance

 33

guidance will always point the defender in the direction where the attackers are,

this small but finite value is constantly causing the probability of the attackers

surviving (𝑞𝑙(𝑡)) to decrease. Figure 16 illustrates this situation where the

probability that the attackers survives is constantly decreasing even when they

should be out of the weapon range of the defenders.

 Effect of small but finite values of hit rate function on 𝑞𝑙(𝑡) Figure 16.

We can see from the trajectory of the attackers that the attackers almost

always remain within a zone where the hit rate of the defenders against them is

very low. However, since the defenders are barely moving in this case, the

closing speed of the attackers is lower than when the defenders are moving at

Plot of attackers changing
color as 𝑞𝑙(𝑡) decreases

Very low hit rates

Low hit rates

Moderate to high hit rates

 34

faster speeds. Hence, the time that the attackers are within the defenders’ FOV

is considerably long. Coupled with the fact that the attackers are always within

the defenders’ FOV due to the nature of pursuit guidance, the result is that the

integration of the low hit rate values over a long period of time reduces the

probability of the attackers surviving to a point where they are considered

neutralized in the simulation.

This result is not observed when PN guidance is used because the

attackers will go out of the defenders’ FOV when the speed of the defenders gets

too low. At higher speed ratios, this effect will not be significant as the region of

very low hit rate values will be traversed in a reasonably short period of time that

it does not contribute much to lowering the survival rate of the attackers.

We have to look into altering the modeling of the hit rate function of the

defenders to limit the range at which the function can have a value. This will

probably give more reasonable and more realistic results. This can be done in

further studies on this subject.

 35

IV. CONCLUSION AND RECOMMENDED FUTURE WORK

A. CONCLUSION

In this thesis, we have developed a simulation that allowed us to simulate

various distributed strategies that can be used in the defense of a HVU against a

swarm attack. A cost function is formulated to calculate probability that the HVU

survives the swarm attack. This gives us a measure of effectiveness of each

strategy used.

The results have given us great insights into how some of the defender

parameters used can influence the survival rate of the HVU. Pursuit guidance,

normally not very effective in modern missile applications, has shown to be a

rather effective strategy, and seemingly even better than the preferred PN

guidance law.

Having larger number of defenders improves the effectiveness of the

defensive force, but beyond a certain number of defenders, the utility of the

defenders will drop. The optimal ratio of defenders to attackers is shown to be 1

to 4 for the particular scenario that we looked at.

The simulations also showed that having high defender speeds might

hinder, not help, the defense operation. A moderate speed that allows sufficient

time on target, but yet able to intercept attackers at a reasonable distance from

the HVU should be chosen.

The results where pursuit guidance at low speeds perform surprisingly

well reveals that the hit rate function used in the simulations still needs some

more considerations to make the analysis more accurate.

B. RECOMMENDED FUTURE WORK

1. Other Guidance Methods or Strategies

The simulation developed in this thesis provides a framework in which

different guidance methods or defensive strategies can be evaluated for their

 36

effectiveness. For example, Shin, 2011[6] describes a Earliest Intercept

Geometry Guidance Law (EIGGL) that can be used for target allocation to

minimize the distance that the attacker can cover, and hence maximizes the

distance of the attackers to the HVU.

An impact angle control guidance law is also described in the same paper.

This guidance law optimizes the impact angle between the defender and the

attacker during the time of intercept, effectively setting them up in a head-on

collision course, which increases the chance of interception. These laws can be

evaluated for their effectiveness in the swarm attack scenario that we have set

up.

2. Different Engagement Scenarios

In this thesis, we have only looked at a particular engagement scenario

where a HVU is moving in a straight line at a relatively slow speed, with attackers

moving aggressively towards it from one direction. A HVU can come under a

swarm attack in many other possible situations. For example, attackers can

come from multiple directions, and may maneuver to avoid the defenders that are

deployed against them. The HVU can be stationary, like an oilrig or even an on-

shore facility. All these scenarios can be modeled and simulated within this

framework, and different defensive strategies can be evaluated to find out their

effectiveness in such scenarios.

3. Intent Recognition

At the initial stage of the research for this thesis, a real time graphical

simulation with intent recognition algorithm was being developed in the University

of Nevada, Reno (UNR). The intention was to integrate this simulation with the

simulation developed here to simulate the engagement in real time and display

the engagement in 3D graphics. More importantly, the intent recognition

algorithm would allow us to study the reaction of the defensive force when the

hostile targets are hidden among neutral ones. Daniel Bigelow from UNR, came

down to NPS to install the simulation for the integration. Unfortunately, even

 37

though the simulation was successfully installed, the simulation was unstable due

to the different hardware used here in NPS. Due to time constraints, this part of

the thesis had to be abandoned, but future work can be done to further explore

the possibilities of integrating the simulations.

4. Hit Rate Function Modeling

As discussed in the results section, the hit rate functions used currently

may give us MOE that are misleading due to the small finite values of the hit rate

function at large ranges. Further work is needed to come up with a hit rate

function that has a finite range value and describes range effectiveness of real

life weapons more accurately.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

APPENDIX A. MATLAB® SIMULATION CODE

This appendix contains the list of script files and function codes that were

used in the simulation.

A. SIMULATION RUN SCRIPT FILES

%--
% File: Evaluate_Scenario_Performance.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description: Sets up the parameters for cost evaluation algorithm
% - Runs trajectory generation scripts
% - Computes cost and plots attacker and defender trajectories
% Inputs: Discretization time and space, method of evaluation, number
% of attackers, number of defenders
% Outputs: Objective value
%--
function ObjValue = Evaluate_Scenario_Performance(Discretization,

Methods,
NumberofAttackers,
NumberofDefenders)

global CONSTANTS OFFLINE_TRAJECTORIES
 PDF_VALUES MESHED_PDF_VALUES
 DISCRETIZATION_VALUES MESHED_DISCRETIZATION_VALUES
 DIFFERENTIATION_MATRICES
 INTEGRATION_WEIGHTS MESHED_INTEGRATION_WEIGHTS;

global p0 N % To interface with Kaminer code without editing

warning('off', 'all')
% This suppresses the warning that future versions of MATLAB® will not
% support evaluating scripts with feval, which is what I'm using to
% evaluate arbitrary versions of Ding's heuristic

addpath('./performance_related_functions', '-begin');
addpath('./performance_related_functions/Parameterized_Control_Kernel')
addpath('./performance_related_functions/hit_rate_functions')
addpath('./performance_related_functions/cline')
addpath('./code', '-begin') %Ding's code

Heuristic = 'PlotOneManyBadGuysV11';

% PDF choices
CONSTANTS.ParameterSpace.PFD_Choices

={'Independent','Uniform','Uniform'};

%---Simulation Time Range---%
CONSTANTS.Time.T0=0; %start time

 40

%-----Parameter Ranges------%
%--%
% W0 and WF should be 1xParameterSpace.Dimension %
% arrays with the starting points and ending points %
% respectively of each parameter's domain. %
% When attackers have identical parameter ranges, %
% the shortcut of listing just the number of %
% parameters per attacker can be taken. %
%--%
CONSTANTS.ParameterSpace.W0=[8000,0]; %start of each parameter
CONSTANTS.ParameterSpace.WF=[8100,500]; %end of each parameter

%---
% The following variables are not meant to be modified.
% They are set in the function call and just relabeled here to match
% with previous code.
%---
N = Discretization(1);
CONSTANTS.N = N; % This redundant declaration is here, because the
% heuristics and Kaminer code need N as a global variable to be run
% with minimal editing (to be run without rewriting them as function
% calls), but the control code and many subroutines use CONSTANTS.N

% Number of probabilistic parameters per attacker. In this case,
% starting position (in two dimensions).
CONSTANTS.ParameterSpace.Dimension = 2;

% Number of attackers
% This is part of the substruct of attacker specific constants, for
% historical reasons.
CONSTANTS.ATTACKERS.Na = NumberofAttackers;
% Number of searchers
CONSTANTS.Ns = NumberofDefenders;
%---

%---
% Set the constants for the hit rate functions and the filenames
%---
Calibrate_Hit_Rate_Functions
%---

%---
% Create DIFFERENTIATION_MATRICES, INTEGRATION_WEIGHTS,
% MESHED_INTEGRATION_WEIGHTS, DISCRETIZATION VALUES, and
% MESHED_DISCRETIZATION_VALUES.
%---
disp('%%');
disp(Heuristic);
disp('--');
disp('Discretization:');
disp(Discretization);
Calculate_Methods(Discretization, Methods);
disp('--');
%---

 41

 [x_a_i, x_d_a_i, x_0_a_i] =
RunDingsSimulation(Heuristic,NumberofDefenders,

NumberofAttackers);
%---

for s = 1:NumberofAttackers
 X = interp1(x_a_i{s}(:,3),[x_a_i{s}(:,1),x_a_i{s}(:,2)],

DISCRETIZATION_VALUES{1},'spline');
 x_a_i{s}(:,3) = DISCRETIZATION_VALUES{1}(:);
 x_a_i{s}(:,1) = X(:,1);
 x_a_i{s}(:,2) = X(:,2);
end
for s = 1:NumberofDefenders
 X = interp1(x_d_a_i{s}(:,3),[x_d_a_i{s}(:,1),x_d_a_i{s}(:,2)],

DISCRETIZATION_VALUES{1},'spline');
 x_d_a_i{s}(:,3) = DISCRETIZATION_VALUES{1}(:);
 x_d_a_i{s}(:,1) = X(:,1);
 x_d_a_i{s}(:,2) = X(:,2);
end
X = interp1(x_0_a_i(:,3),[x_0_a_i(:,1),x_0_a_i(:,2)],

DISCRETIZATION_VALUES{1},'spline');
x_0_a_i(:,3) = DISCRETIZATION_VALUES{1}(:);
x_0_a_i(:,1) = X(:,1);
x_0_a_i(:,2) = X(:,2);
%---

%---
% Plot various desired plots.
%---
Result_Plots;
%---

%---
% Calculate the probability function just for the a_i trajectories
%---
[p, q] = Probability_Function(x_a_i,x_d_a_i,x_0_a_i);
% Probability that the HVU does not survive at time T.
ObjValue = 1-p(end);
%---

 42

%--
% File: Run_Scenarios.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description: Runs script to load 50 pre-generated attackers’ position
% - Runs Evaluate_Scenario_Performance.m with appropriate parameters.
% - Logs evaluated performance for the 50 runs
% Inputs: None
% Outputs: Array of objective values
%--
global p0

ObjValues = zeros(50,1);

for scn = 1:50
 p0 = load(['Scenario' int2str(scn) '.dat']);
 ObjValues(scn) = Evaluate_Scenario_Performance([500,1,1],[0,0,0],

40,5);
end

 43

B. ATTACKER & DEFENDER TRAJECTORY GENERATION CODE

%--
% File: RunMoreThanOneBadGuy.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description: Generates optimized attacker trajectory based on given
% limitations
% Inputs: None
% Outputs: Time for optimized trajectory
%--
global vShip psiShip v0 vf vmin vmax psidotmax p0 a1 lambda0 lambdaf tf

p0ship BadGuyTotal N DefenderTotal
global p_swarm Defender p_ship Dindex tf

% Initial conditions for the ship
vShip = 5; %m/sec
psiShip = pi/2; %rad
p0ship = [0;0];

% Initial conditions for the bad guys
% Initial and final velocities of the bad guys in m/sec
v0 = 23; vf = 23;

% Limits for the bad guys
% Max and min speeds of the bad guy
vmin = 1; vmax = 23;
% Turn rate limit for the bad guy
psidotmax = 0.1;

% Initial guess on the hit time
tf = norm(p0(:,1) - p0ship)/vmax;
for i = 2:BadGuyTotal
 tf = min(tf,norm(p0(:,i) - p0ship)/vmax);
end

options = optimset('TolFun',.1,'maxiter',100,'MaxFunEvals',100,

'Display', 'on');
[x,fval,exitflag,output] =

fminsearch(@MoreThanOneBadGuyCost,tf,options);

% This ends the initialization of BadGuy part
tf = x(1);

 44

%--
% File: MoreThanOneBadGuy.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description: Computes cost for a single attacker
% Inputs: Number of attackers, final time
% Outputs: Cost for single attacker trajectory
%--
function J = MoreThanOneBadGuy(BadGuyNumber,tf0)

global a1 vShip psiShip v0 vf vmin vmax psidotmax p0 p0ship N

% Time step
dt = tf0/N;

% Extract optimization parameters
x0 = p0(:,BadGuyNumber);
psi0 = atan2(x0(2)-p0ship(2),x0(1)-p0ship(1))-pi;

% Initialize
xf = p0ship + [vShip*cos(psiShip);
vShip*sin(psiShip)]*(tf0-(BadGuyNumber - 1)*dt)';
xp0 = [cos(psi0); sin(psi0)];

perror = [cos(psiShip) sin(psiShip);-sin(psiShip) cos(psiShip)]

*(x0 - p0ship);

if perror(2) >= 0
 psif = psiShip - pi/2;
else
 psif = psiShip + pi/2;
end

xpf = [cos(psif); sin(psif)];
xpp0 = zeros(2,1); xppf = zeros(2,1);
xppp0 = zeros(2,1); xpppf = zeros(2,1);

% Define speed profile
lambda0 = v0/norm(xp0);
lambdaf = vf/norm(xpf);

% Evaluate UAV path coefficients
if (abs(lambda0 - lambdaf) < 1e-6)
 tauf = lambda0*tf0;
else
 tauf = (lambdaf - lambda0)*tf0/log(lambdaf/lambda0);
end
% The 7th order coefficients below are obtained using the same steps as
% in Ghabcheloo paper
% A = [1 0 0 0 0 0 0 0;
% 0 1 0 0 0 0 0 0;
% 0 0 2 0 0 0 0 0;
% 0 0 0 6 0 0 0 0;
% 1 tauf tauf^2 tauf^3 tauf^4 tauf^5 tauf^6 tauf^7;
% 0 1 2*tauf 3*tauf^2 4*tauf^3 5*tauf^4 6*tauf^5 7*tauf^6;

 45

% 0 0 2 6*tauf 12*tauf^2 20*tauf^3 30*tauf^4 42*tauf^5;
% 0 0 0 6 24*tauf 60*tauf^2 120*tauf^3 210*tauf^4];
%
% b = [x0 xp0 xpp0 xppp0 xf xpf xppf xpppf]';
%
% a1 = inv(A)*b;

a1 = [x0 ...

xp0 ...
xpp0/2 ...
xppp0/6 ...
(35*xf)/tauf^4 - (35*x0)/tauf^4 - (20*xp0)/tauf^3 –

(15*xpf)/tauf^3 – (5*xpp0)/tauf^2 + (5*xppf)/(2*tauf^2) –
(2*xppp0)/(3*tauf) - xpppf/(6*tauf) ...

(84*x0)/tauf^5 - (84*xf)/tauf^5 + (45*xp0)/tauf^4 +
(39*xpf)/tauf^4 + (10*xpp0)/tauf^3 - (7*xppf)/tauf^3 +
xppp0/tauf^2 + xpppf/(2*tauf^2) ...

(70*xf)/tauf^6 - (70*x0)/tauf^6 - (36*xp0)/tauf^5 –
(34*xpf)/tauf^5 - (15*xpp0)/(2*tauf^4) +
(13*xppf)/(2*tauf^4) - (2*xppp0)/(3*tauf^3) –
xpppf/(2*tauf^3) ...

(20*x0)/tauf^7 - (20*xf)/tauf^7 + (10*xp0)/tauf^6 +
(10*xpf)/tauf^6 + (2*xpp0)/tauf^5 - (2*xppf)/tauf^5 +
xppp0/(6*tauf^4) + xpppf/(6*tauf^4)];

v_max = max(v0,vf); v_min = min(v0,vf); psidot_max = 0;

for n = 0:N

 t = n*dt;
 if (abs(lambda0 - lambdaf) < 1e-6)
 tau = t/tf0*tauf;
 else
 tau = tauf*((lambdaf/lambda0)^(t/tf0) - 1)*lambda0/(lambdaf-

lambda0);
 end

 % Compute UAV path and its derivatives
 p = zeros(2,1);
 for i = 1:8
 p = p + a1(:,i)*tau^(i-1);
 end
 p_p = zeros(2,1);
 for i = 2:8
 p_p = p_p + (i-1)*a1(:,i)*tau^(i-2);
 end
 p_pp = zeros(2,1);
 for i = 3:8
 p_pp = p_pp + (i-1)*(i-2)*a1(:,i)*tau^(i-3);
 end

 % Compute speed
 lambda = lambda0 + (lambdaf-lambda0)*tau/tauf;
 v = lambda*norm(p_p);

 46

 % Compute signed curvature in 2D
 curv = (p_pp(2)*p_p(1) - p_pp(1)*p_p(2))/norm(p_p)^3;
 psidot_max = max(psidot_max,v*curv);
 v_max = max(v,v_max);
 v_min = min(v,v_max);

end

J = tf0 + 10*(psidot_max - psidotmax)^2/psidotmax^2 + (v_min –

vmin)^2/vmin^2 + 1e6*(v_max - vmax)^2/vmax^2;

return

%--
% File: MoreThanOneBadGuyCost.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description: Computes total cost for all attackers
% Inputs: Final time
% Outputs: Total cost for all attackers
%--
function J = MoreThanOneBadGuyCost(tf0)

global BadGuyTotal

J = tf0;

for i = 1:1:BadGuyTotal
 J = J + MoreThanOneBadGuy(i,tf0);
end

return

 47

%--
% File: MoreThanOneBadGuyData.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description: Calculate attacker position and velocity
% Inputs: Number of attackers, final time, current simulation time
% Outputs: Position, speed, turn rate, velocity of attacker
%--
function [p,v,psidot,vel] = MoreThanOneBadGuyData(BadGuyNumber,tf0,t)

global vShip psiShip v0 vf p0 p0ship N % vmin vmax psidotmax

% Time step
dt = tf0/N;

% Extract optimization parameters
x0 = p0(:,BadGuyNumber);
psi0 = atan2(x0(2)-p0ship(2),x0(1)-p0ship(1))-pi;

% Initialize
xf = p0ship + [vShip*cos(psiShip); vShip*sin(psiShip)]*(tf0-

(BadGuyNumber - 1)*dt)';
xp0 = [cos(psi0); sin(psi0)];

perror = [cos(psiShip) sin(psiShip);-sin(psiShip) cos(psiShip)]*(x0-

p0ship);

if perror(2) >= 0
 psif = psiShip - pi/2;
else
 psif = psiShip + pi/2;
end

xpf = [cos(psif); sin(psif)];
xpp0 = zeros(2,1); xppf = zeros(2,1);
xppp0 = zeros(2,1); xpppf = zeros(2,1);

% Define speed profile
lambda0 = v0/norm(xp0);
lambdaf = vf/norm(xpf);

% Evaluate UAV path coefficients
if (abs(lambda0 - lambdaf) < 1e-6)
 tauf = lambda0*tf0;
else
 tauf = (lambdaf - lambda0)*tf0/log(lambdaf/lambda0);
end
% The 7th order coefficients below are obtained using the same steps as
% in Ghabcheloo paper
% A = [1 0 0 0 0 0 0 0;
% 0 1 0 0 0 0 0 0;
% 0 0 2 0 0 0 0 0;
% 0 0 0 6 0 0 0 0;
% 1 tauf tauf^2 tauf^3 tauf^4 tauf^5 tauf^6 tauf^7;
% 0 1 2*tauf 3*tauf^2 4*tauf^3 5*tauf^4 6*tauf^5 7*tauf^6;

 48

% 0 0 2 6*tauf 12*tauf^2 20*tauf^3 30*tauf^4 42*tauf^5;
% 0 0 0 6 24*tauf 60*tauf^2 120*tauf^3 210*tauf^4];
%
% b = [x0 xp0 xpp0 xppp0 xf xpf xppf xpppf]';
%
% a1 = inv(A)*b;

a1 = [x0 ...

xp0 ...
xpp0/2 ...
xppp0/6 ...
(35*xf)/tauf^4 - (35*x0)/tauf^4 - (20*xp0)/tauf^3 –

(15*xpf)/tauf^3 – (5*xpp0)/tauf^2 + (5*xppf)/(2*tauf^2) –
(2*xppp0)/(3*tauf) - xpppf/(6*tauf) ...

(84*x0)/tauf^5 - (84*xf)/tauf^5 + (45*xp0)/tauf^4 +
(39*xpf)/tauf^4 + (10*xpp0)/tauf^3 - (7*xppf)/tauf^3 +
xppp0/tauf^2 + xpppf/(2*tauf^2) ...

(70*xf)/tauf^6 - (70*x0)/tauf^6 - (36*xp0)/tauf^5 –
(34*xpf)/tauf^5 - (15*xpp0)/(2*tauf^4) +
(13*xppf)/(2*tauf^4) - (2*xppp0)/(3*tauf^3) –
xpppf/(2*tauf^3) ...

(20*x0)/tauf^7 - (20*xf)/tauf^7 + (10*xp0)/tauf^6 +
(10*xpf)/tauf^6 + (2*xpp0)/tauf^5 - (2*xppf)/tauf^5 +
xppp0/(6*tauf^4) + xpppf/(6*tauf^4)];

if (abs(lambda0 - lambdaf) < 1e-6)
 tau = t/tf0*tauf;
else
 tau = tauf*((lambdaf/lambda0)^(t/tf0) - 1)*lambda0/(lambdaf-
lambda0);
end

% Compute UAV path and its derivatives
p = zeros(2,1);
for i = 1:8
 p = p + a1(:,i)*tau^(i-1);
end
p_p = zeros(2,1);
for i = 2:8
 p_p = p_p + (i-1)*a1(:,i)*tau^(i-2);
end
p_pp = zeros(2,1);
for i = 3:8
 p_pp = p_pp + (i-1)*(i-2)*a1(:,i)*tau^(i-3);
end

% Compute speed
lambda = lambda0 + (lambdaf-lambda0)*tau/tauf;
v = lambda*norm(p_p);
vel = lambda*p_p;

% Compute signed curvature in 2D
curv = (p_pp(2)*p_p(1) - p_pp(1)*p_p(2))/norm(p_p)^3; % THIS IS IN M
psidot = v*curv;
end

 49

%--
% File: PlotOneManyBadGuysV11.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description:
% - Each defender calculates a weighted centroid and effective velocity
% - for the attackers in its FOV.
% - A turn rate command is generated using PN guidance using the
% - calculated centroid and velocity.
% - This version divides up the attackers and assigns them to each
% - defender. The defenders will stop once they lose sight of attackers
% - assigned to them.
% - This version also includes a neutralizing algorithm, in which an
% - attacker is neutralized when it stays within the FOV and attacking
% - range of a defender for a set amount of time.
% Inputs: Initial ship and swarm parameters
% Outputs: Defender trajectory
%--
global vShip psiShip v0 vf N p0 DefenderTotal
global p_swarm Defender p_ship Dindex tf

% PlotOneManyBadGuysV11 - Guidance Version 11

dt = tf/N; % Time Step
p_ship = zeros(N+1,3);
for i = 0:N
 t = i*dt;
 p_ship(i+1,:) = [t p0ship' + [vShip*cos(psiShip)
vShip*sin(psiShip)]*t];
end

% Assigning attackers to defenders
% This algorithm assumes attackers >= defenders
% Attacker groups are assigned to defenders based on their position
Assign=zeros(DefenderTotal,2);
Assign(DefenderTotal,1)=1;
Assign(DefenderTotal,2)=floor(BadGuyTotal/DefenderTotal);
for i=DefenderTotal-1:-1:1
 Assign(i,1)=Assign(i+1,2)+1;
 Assign(i,2)=Assign(i+1,2)+floor(BadGuyTotal/DefenderTotal);
end
for i=1:mod(BadGuyTotal,DefenderTotal)
 Assign(1:i,2)=Assign(1:i,2)+1;
end
for i=1:mod(BadGuyTotal,DefenderTotal)-1
 Assign(1:i,1)=Assign(1:i,1)+1;
end
% Centroid of initial position of attackers
APos = zeros(2,DefenderTotal);
for j=1:DefenderTotal
 for i = Assign(j,1):Assign(j,2)
 APos(:,j) = APos(:,j) + p0(:,i);
 end
 APos(:,j) = APos(:,j)/(Assign(j,2)-Assign(j,1)+1);
end

 50

% Defenders parameters
MaxOmega = 1; % Max turn rate
Dfov = 120; % Field of view (deg)
Dv = 25; % Speed (m/s)

% Initialize matrices
range_max = 0; v_max = max(v0,vf); v_min = min(v0,vf); psidot_max = 0;
p_test = zeros(N+1,2);
p_swarm = zeros(N+1,(BadGuyTotal*2)+1); v_swarm =
zeros(N+1,BadGuyTotal+1); psi_dot = zeros(N+1,BadGuyTotal+1);
pcombined = zeros(1,BadGuyTotal*2); vcombined = zeros(1,BadGuyTotal);
psidotcombined = zeros(1,BadGuyTotal);
Dpos = zeros(2,DefenderTotal); Dpsi = zeros(DefenderTotal,1);
Di = zeros(2,DefenderTotal);Defender = zeros(N+1, DefenderTotal*2+1);
VelD = zeros(2,DefenderTotal);
Range = zeros(DefenderTotal,N+1,BadGuyTotal+1); Dindex =
zeros(DefenderTotal,1);
Alog = zeros(N+1, DefenderTotal*2+1); HeadingLog = zeros(N+1,
DefenderTotal+1);
NeutAtt = zeros(BadGuyTotal, DefenderTotal + 1);
SimEnd = 0;

% Initial positions and heading for defenders
for i = 1:DefenderTotal
 Dpos(:,i) = p0ship + (i-1)*[0;25] + [10;0];
 % Velocity vector pointed towards centroid of attackers
 VelD(:,i) = Dv*(APos(:,i)-Dpos(:,i))/norm(APos(:,i)-Dpos(:,i));
 Dpsi(i) = pi/2 - atan2(VelD(2,i), VelD(1,i));
end

for i = 0:N
 t = i*dt;
 p_ship(i+1,:) = [t p0ship' + [vShip*cos(psiShip)

vShip*sin(psiShip)]*t];

 WPos = zeros(2, DefenderTotal);
 WVel = zeros(2, DefenderTotal);
 W = zeros(DefenderTotal,1);

 for j = 1:BadGuyTotal
 [p,v,psidot,vel] = MoreThanOneBadGuyData(j,tf,t);
 pcombined(1,((2*j)-1):(2*j)) = p';
 vcombined(1,j) = v;
 psidotcombined(1,j) = psidot;
 % If attacker is already neutralized skip to next one
 if (NeutAtt(j,DefenderTotal+1) ~= 0)
 continue;
 end

 for k = 1:DefenderTotal
 % Attacker not assigned to this defender, skip to next

defender
 if ((j<Assign(k,1))||(j>Assign(k,2)))
 continue;
 end

 51

 % Calculate range to attacker
 Li = norm(p-Dpos(:,k));
 Range(k,i+1,1) = t;
 Range(k,i+1,j+1) = Li;

 Ai = (p-Dpos(:,k))/Li; % Unit LOS vector to attacker
 dVel = VelD(:,k) - vel;
 Vc = Ai'*dVel; % Closing velocity

 % Calculate LOS angle
 temp = atan2(Ai(2),Ai(1));
 LOS = (temp-(pi/2-Dpsi(k)))*180/pi;
 while (abs(LOS) > 180)
 LOS = -1*sign(LOS)*(360 - abs(LOS));
 end
 % Sum weighted position and velocity if within FOV
 if (abs(LOS) <= Dfov/2)
 if (Li < 150)
 % Attacker within FOV and attacking range of

 % defender, increase counter (one time step)
 NeutAtt(j,k) = NeutAtt(j,k) + 1;
 % If attacker stays within attacking range for X

 % secs attacker considered neutralized
 if (NeutAtt(j,k)*dt > 3)
 NeutAtt(j,DefenderTotal+1) = i;
 continue;
 end
 else
 NeutAtt(j,k) = 0; % Reset neutralize counter if

attacker goes out of range
 end
 WPos(:,k) = WPos(:,k) + (Vc/Li)*p;
 WVel(:,k) = WVel(:,k) + (Vc/Li)*vel;
 W(k) = W(k) + (Vc/Li);
 else
 NeutAtt(j,k) = 0; % Reset neutralize counter if

attacker goes out of FOV
 end
 end
 end

 % If all attackers neutralized, end simulation
 if ((prod(NeutAtt(:,DefenderTotal+1)) ~= 0) && (SimEnd == 0))
 SimEnd = i;
 end

 % Guidance algorithm
 for k = 1:DefenderTotal
 Defender(i+1, 1) = t;
 Defender(i+1, (2*k):(2*k+1)) = Dpos(:,k)';
 % Defender lost sight of attacker, stop guidance
 if (abs(W(k)) < 1e-15)
 continue;
 else % Attacker(s) in FOV
 % Calculate weighted centroid and velocity

 52

 CPos = WPos(:,k)/W(k);
 CVel = WVel(:,k)/W(k);
 end
 Alog(i+1, 1) = t;
 Alog(i+1, (2*k):(2*k+1)) = CPos';
 Li = norm(CPos - Dpos(:,k)); % Calculate range to centroid
 Ai = (CPos-Dpos(:,k))/Li; % Unit LOS vector to centroid
 dVel = VelD(:,k) - CVel;
 Vc = Ai'*dVel; % Closing velocity of centroid
 % LOS rate of centroid
 LOSrate = (dVel(1)*Ai(2)-dVel(2)*Ai(1))/Li;
 temp = atan2(Ai(2),Ai(1));
 LOS = (temp-(pi/2-Dpsi(k)));
 % Calculate turn rate using PN guidance
 omega = 6*LOSrate;
 % Limit turn rate by MaxOmega
 if (abs(omega) > MaxOmega)
 omega = sign(omega)*MaxOmega;
 end
 turn = -1*omega*dt; % Turn angle
 Dpsi(k) = Dpsi(k) + turn; % Update heading
 VelD(:,k) = Dv*[sin(Dpsi(k));cos(Dpsi(k))]; % Update velocity
 Dpos(:,k) = Dpos(:,k) + VelD(:,k)*dt; % Update position

 HeadingLog(i+1,1) = t;
 HeadingLog(i+1, k+1) = pi/2-Dpsi(k);
 end

 v_max = max(v,v_max);
 v_min = min(v,v_max);

 p_swarm(i+1,:) = [t pcombined];
 v_swarm(i+1,:) = [t vcombined];
 psi_dot(i+1,:) = [t psidotcombined];

 % Update centroid of position of attackers
 APos = zeros(2,DefenderTotal);
 for j=1:DefenderTotal
 for k = Assign(j,1):Assign(j,2)
 APos(:,j) = APos(:,j) + pcombined(1,2*k-1:2*k)';
 end
 APos(:,j) = APos(:,j)/(Assign(j,2)-Assign(j,1)+1);
 end

 p_test(i+1,:) = p';
end

 53

%--
% File: PlotOneManyBadGuysV12.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description:
% - The unit LOS vector to every attacker in the defenders' FOV is
% - combined to obtain the heading required to intercept the attackers.
% - The LOS vectors are weighted by the attackers' range and velocity.
% - This version divides up the attackers and assigns them to each
% - defender. The defenders will stop once they lose sight of attackers
% - assigned to them.
% - This version also includes a neutralizing algorithm, in which an
% - attacker is neutralized when it stays within the FOV and attacking
% - range of a defender for a set amount of time.
% Inputs: Initial ship and swarm parameters
% Outputs: Defender trajectory
%--
global vShip psiShip v0 vf N p0 DefenderTotal
global p_swarm Defender p_ship Dindex tf

dt = tf/N; % Time Step
p_ship = zeros(N+1,3);
for i = 0:N
 t = i*dt;
 p_ship(i+1,:) = [t p0ship' + [vShip*cos(psiShip)
vShip*sin(psiShip)]*t];
end

% Assigning attackers to defenders
% This algorithm assumes attackers >= defenders
% Attacker groups are assigned to defenders based on their position
Assign=zeros(DefenderTotal,2);
Assign(DefenderTotal,1)=1;
Assign(DefenderTotal,2)=floor(BadGuyTotal/DefenderTotal);
for i=DefenderTotal-1:-1:1
 Assign(i,1)=Assign(i+1,2)+1;
 Assign(i,2)=Assign(i+1,2)+floor(BadGuyTotal/DefenderTotal);
end
for i=1:mod(BadGuyTotal,DefenderTotal)
 Assign(1:i,2)=Assign(1:i,2)+1;
end
for i=1:mod(BadGuyTotal,DefenderTotal)-1
 Assign(1:i,1)=Assign(1:i,1)+1;
end

% Centroid of initial position of attackers
APos = zeros(2,DefenderTotal);
for j=1:DefenderTotal
 for i = Assign(j,1):Assign(j,2)
 APos(:,j) = APos(:,j) + p0(:,i);
 end
 APos(:,j) = APos(:,j)/(Assign(j,2)-Assign(j,1)+1);
end

 54

% Defenders parameters
MaxOmega = 1; % Max turn rate
Dfov = 120; % Field of view (deg)
Dv = 25; % Speed (m/s)

% Initialize matrices
range_max = 0; v_max = max(v0,vf); v_min = min(v0,vf); psidot_max = 0;
p_test = zeros(N+1,2);
p_swarm = zeros(N+1,(BadGuyTotal*2)+1); v_swarm =
zeros(N+1,BadGuyTotal+1); psi_dot = zeros(N+1,BadGuyTotal+1);
pcombined = zeros(1,BadGuyTotal*2); vcombined = zeros(1,BadGuyTotal);
psidotcombined = zeros(1,BadGuyTotal);
Dpos = zeros(2,DefenderTotal); Dpsi = zeros(DefenderTotal,1);
Di = zeros(2,DefenderTotal);Defender = zeros(N+1, DefenderTotal*2+1);
VelD = zeros(2,DefenderTotal);
Range = zeros(DefenderTotal,N+1,BadGuyTotal+1); Dindex =
zeros(DefenderTotal,1);
Alog = zeros(N+1, DefenderTotal*2+1); HeadingLog = zeros(N+1,
DefenderTotal+1);
NeutAtt = zeros(BadGuyTotal, DefenderTotal + 1);
SimEnd = 0;

% Initial positions and heading for defenders
for i = 1:DefenderTotal
 Dpos(:,i) = p0ship + (i-1)*[0;25] + [10;0];
 % Velocity vector pointed towards centroid of attackers
 VelD(:,i) = Dv*(APos(:,i)-Dpos(:,i))/norm(APos(:,i)-Dpos(:,i));
 Dpsi(i) = pi/2 - atan2(VelD(2,i), VelD(1,i));
end

for i = 0:N
 t = i*dt;

 Di = zeros(2, DefenderTotal);
 DEN = zeros(DefenderTotal,1);
 for j = 1:BadGuyTotal
 [p,v,psidot,vel] = MoreThanOneBadGuyData(j,tf,t);
 pcombined(1,((2*j)-1):(2*j)) = p';
 vcombined(1,j) = v;
 psidotcombined(1,j) = psidot;

 for k = 1:DefenderTotal
 % Attacker not assigned to this defender, skip to next

% defender
 if ((j<Assign(k,1))||(j>Assign(k,2)))
 continue;
 end
 % Calculate range to attacker
 Li = norm(p-Dpos(:,k));
 Range(k,i+1,1) = t;
 Range(k,i+1,j+1) = Li;

 Ai = (p-Dpos(:,k))/Li; % Unit LOS vector to attacker
 dVel = VelD(:,k) - vel;
 Vc = Ai'*dVel; % Closing velocity

 55

 % Calculate LOS angle
 temp = atan2(Ai(2),Ai(1));
 LOS = (temp-(pi/2-Dpsi(k)))*180/pi;
 while (abs(LOS) > 180)
 LOS = -1*sign(LOS)*(360 - abs(LOS));
 end
 % Sum weighted LOS vector if within FOV
 if (abs(LOS) <= Dfov/2)
 if (Li < 150)
 % Attacker within FOV and attacking range of

 % defender, increase counter (one time step)
 NeutAtt(j,k) = NeutAtt(j,k) + 1;
 % If attacker stays within attacking range for X

 % secs attacker considered neutralized
 if (NeutAtt(j,k)*dt > 3)
 NeutAtt(j,DefenderTotal+1) = i;
 continue;
 end
 else
 NeutAtt(j,k) = 0; % Reset neutralize counter if

attacker goes out of range
 end
 Di(:,k) = Di(:,k) + (Vc/Li)*Ai;
 DEN(k) = DEN(k) + (Vc/Li);
 end
 end
 end

 % If all attackers neutralized, end simulation
 if ((prod(NeutAtt(:,DefenderTotal+1)) ~= 0) && (SimEnd == 0))
 SimEnd = i;
 end

 % Guidance algorithm
 for k = 1:DefenderTotal
 Defender(i+1, 1) = t;
 Defender(i+1, (2*k):(2*k+1)) = Dpos(:,k)';
 if (abs(DEN(k)) < 1e-15)
 continue;
 else % Attacker(s) in FOV
 Di(:,k) = Di(:,k)/DEN(k);
 Di(:,k) = Di(:,k)/norm(Di(:,k));
 end
 turn = pi/2-atan2(Di(2,k), Di(1,k)) - Dpsi(k);
 if (abs(turn) > MaxOmega*dt)
 turn = sign(turn)*MaxOmega*dt;
 Dpsi(k) = Dpsi(k) + turn;
 Di(:,k) = [sin(Dpsi(k));cos(Dpsi(k))];
 else
 Dpsi(k) = pi/2-atan2(Di(2,k), Di(1,k));
 end
 Dpos(:,k) = Dpos(:,k) + Dv*Di(:,k)*dt;

 HeadingLog(i+1,1) = t;

 56

 HeadingLog(i+1, k+1) = pi/2-Dpsi(k);
 end

 v_max = max(v,v_max);
 v_min = min(v,v_max);

 p_swarm(i+1,:) = [t pcombined];
 v_swarm(i+1,:) = [t vcombined];
 psi_dot(i+1,:) = [t psidotcombined];

 p_test(i+1,:) = p';
 % Update centroid of position of attackers
 APos = zeros(2,DefenderTotal);
 for j=1:DefenderTotal
 for k = Assign(j,1):Assign(j,2)
 APos(:,j) = APos(:,j) + pcombined(1,2*k-1:2*k)';
 end
 APos(:,j) = APos(:,j)/(Assign(j,2)-Assign(j,1)+1);
 end
end

 57

C. PERFORMANCE RELATED FUNCTIONS

%--
% File: Probability_Function.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description:
% - Calculate the probability function trajectories x_a,x_d, x_0.
% - Returns a cell array for q which holds the probabilities q{l} for
% - each attacker's survival over time. Returns an array p, which hold
% - the probability at each time point for HVU survival. Note that the
% - final objective function is 1-p.
% Inputs:
% Outputs:
%--
function [p, q] = Probability_Function(x_a, x_d, x_0)

global CONSTANTS OFFLINE_TRAJECTORIES ...
 PDF_VALUES MESHED_PDF_VALUES...
 DISCRETIZATION_VALUES MESHED_DISCRETIZATION_VALUES ...
 DIFFERENTIATION_MATRICES ...
 INTEGRATION_WEIGHTS MESHED_INTEGRATION_WEIGHTS;

N = CONSTANTS.N;

q = cell(1,CONSTANTS.ATTACKERS.Na);
for l = 1:CONSTANTS.ATTACKERS.Na
 q{l} = zeros(N, 1);
 z = zeros(N, 1);
 for i = 1:N
 z(i) = 0;
 attacker_positions = cell(1,CONSTANTS.ATTACKERS.Na);
 for s = 1:CONSTANTS.ATTACKERS.Na
 attacker_positions{1,s} = x_a{s}(i, 1:2);
 %all attacker positions influence the defender hit rate
 end
 point_to_evaluate = x_a{l}(i, 1:2);
 for k = 1:CONSTANTS.Ns
 defender_position = x_d{k}(i,1:2);
 z(i) = z(i)+...

feval(str2func(CONSTANTS.DEFENDER_HIT_RATE_FUNCTION),
k,...
point_to_evaluate,...
defender_position,...
defender_heading,...
attacker_positions,...
CONSTANTS.ATTACKERS.Na);

 end
 end
 for i = 1:N
 % This line of code assumes that the integration weights
 % still converge over the partial interval. This still
 % needs to be confirmed, but it's definitely true for
 % Euler's method.

 58

 q{l}(i) = exp(-INTEGRATION_WEIGHTS{1}(1:i)'*z(1:i));
 end
end
p = zeros(N, 1);
z = zeros(N, 1);
for i=1:(N-1)
 for l = 1:CONSTANTS.ATTACKERS.Na
 point_to_evaluate = x_0(i,1:2);
 attacker_position = x_a{l}(i, 1:2);
 %only the position of the particular attacker influences the
 %attacker hit rate
 z(i) = z(i)+...
 q{l}(i)*...
 feval(str2func(CONSTANTS.ATTACKER_HIT_RATE_FUNCTION),...
 l,...
 point_to_evaluate,...
 attacker_position);
 end
end
for i = 1:N
 % This line of code assumes that the integration weights
 % still converge over the partial interval. This still
 % needs to be confirmed, but it's definitely true for
 % Euler's method.
 p(i) = exp(-INTEGRATION_WEIGHTS{1}(1:i)'*z(1:i,1));
end
%---

 59

%--
% File: RunDingsSimulation.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description:
% - Runs Ding's simulation using set Heuristic, NumberofDefenders, and
% - Number of attackers. p0, the array of starting positions of the
% - attackers, is also assumed to be passed to this file as a global
% - variable (it's been set to global so that Kaminer code can be run
% - without editing). Returns cell arrays x_a and x_d, and matrix x_0,
% - reformatted to be in the form used in the optimal control set up.
% - Note: Trajectories still need to be interpolated to match up time
% - points.
% Inputs: Heuristic function, number of attackers, number of defenders
% Outputs: x_a, x_d, x_0
%--
function [x_a, x_d, x_0] =

RunDingsSimulation(Heuristic,NumberofDefenders,...
 NumberofAttackers)

global N DefenderTotal BadGuyTotal p0
global p_swarm Defender p_ship Dindex tf

DefenderTotal = NumberofDefenders; % Total number of defenders
BadGuyTotal = NumberofAttackers; % Total number of attackers

RunMoreThanOneBadGuy
% runs some of the Kaminer code with whatever value p0 is set to.
% Note that this version of the Kaminer code has a preset HVU
% trajectory baked into it.

feval(str2func(Heuristic));
% runs whichever algorithm is set as Heuristic. This is also necessary
% for running the rest of the Kaminer code.
% Trajectories are then put in the format being used in the control
% implementation

x_a=cell(1,NumberofAttackers); %cell array of attacker trajectories
for j = 1:NumberofAttackers
 x_a{1,j}=zeros(N, 3);
 x_a{1,j}(:,3)=p_swarm(1:N,1); %moves time to the third column
 x_a{1,j}(:,1)=p_swarm(1:N,2*j);
 x_a{1,j}(:,2)=p_swarm(1:N, 2*j+1);
end

x_d=cell(1,NumberofDefenders); %cell array of defender trajectories
for j = 1:NumberofDefenders
 x_d{1,j}=zeros(N, 3);
 x_d{1,j}(:,3)=Defender(1:N,1); %moves time to the third column
 x_d{1,j}(:,1)=Defender(1:N,2*j);
 x_d{1,j}(:,2)=Defender(1:N,2*j+1);
 x_d{1,j}(:,4)=HeadingLog(1:N,j+1); %puts heading in the fourth
column

end

 60

x_0=zeros(N, 3); %HVU trajectory

x_0(:,3)=p_ship(1:N,1); %moves time to the third column
x_0(:,1)=p_ship(1:N,2);
x_0(:,2)=p_ship(1:N,3);

%--
% File: Calibrate_Hit_Rate_Functions.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description:
% - Calibrates hit rate functions to desired shape
% Inputs: None
% Outputs: None
%--
global CONSTANTS

%-----------Hit Rate Constants---------%

for i=1:CONSTANTS.Ns
 CONSTANTS.DEFENDER_HIT_RATE{i}.alpha_theta = 3;
 CONSTANTS.DEFENDER_HIT_RATE{i}.beta_theta = 3;
 %parameters for distribution used for angle effectiveness
 CONSTANTS.DEFENDER_HIT_RATE{i}.mu_r = 6;
 CONSTANTS.DEFENDER_HIT_RATE{i}.sigma_r = 0.7;
 %parameters for distribution for radial distance effectiveness
 CONSTANTS.DEFENDER_HIT_RATE{i}.max_angle = pi/3;
 %FOV extends plus or minus this angle from heading
 CONSTANTS.DEFENDER_HIT_RATE{i}.rho = 1200;

%radius within which attackers divide defender attention/rate
 CONSTANTS.DEFENDER_HIT_RATE{i}.sigma = .01;

%tiny number for standard deviation of normal cdf that smooth rho
 x_star = exp(CONSTANTS.DEFENDER_HIT_RATE{i}.mu_r –

(CONSTANTS.DEFENDER_HIT_RATE{i}.sigma_r)^2);
 CONSTANTS.DEFENDER_HIT_RATE{i}.normalizing_constant_r =

1/lognpdf(x_star, ...
CONSTANTS.DEFENDER_HIT_RATE{i}.mu_r,...
CONSTANTS.DEFENDER_HIT_RATE{i}.sigma_r);

end

for i=1:CONSTANTS.ATTACKERS.Na
 CONSTANTS.ATTACKER_HIT_RATE{i}.alpha = 3;
 CONSTANTS.ATTACKER_HIT_RATE{i}.beta = 18;
 CONSTANTS.ATTACKER_HIT_RATE{i}.c1 = 1;
 %changes magnitude of rate function
 CONSTANTS.ATTACKER_HIT_RATE{i}.c2 = 1/800;
 %inversely changes radius of rate function
end

CONSTANTS.DEFENDER_HIT_RATE_FUNCTION =

'FOV_Defender_Hit_Rate_logn_withdivider';
CONSTANTS.ATTACKER_HIT_RATE_FUNCTION = 'Full_Beta_Attacker_Hit_Rate';

 61

%--
% File: Interpret_Results.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description:
% Inputs: None
% Outputs: None
%--
N_guess=500;
NumberofDefenders=5;
NumberofAttackers=40;

[x_a, x_d, x_0, N_real]=RunDingsSimulation(N_guess,...
 NumberofDefenders,...
 NumberofAttackers)

colors = ['g';'r';'k';'c';'m'];
plotters = ['xg';'xr';'xk';'xc';'xm'];
figure; hold on
for j = 1:NumberofAttackers
 plot(x_a{j}(:,1),x_a{j}(:,2));
end
plot(x_0(:,1),x_0(:,2),'m', 'LineWidth', 3,'DisplayName', 'HVU');
for k = 1:NumberofDefenders
 plot(x_d{k}(:,1),x_d{k}(:,2), colors(k), 'LineWidth',
3,'DisplayName', ['Defender ' int2str(k)]);
end
hold off

 62

%--
% File: Plot_Hit_Rates.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description: Plot hit rate functions
% Inputs: None
% Outputs: None
%--
global CONSTANTS

time_index = 10;

x_a = x_a_i;
x_d = x_d_a_i;
x_0 = x_0_a_i;

figure
colormap('jet');
hold on
axis([-5,8000,0,3200,0,1])
view([-6 51])
grid on;

spatial_incr = 35; %fineness of spatial mesh

[X,Y] = meshgrid(-5:spatial_incr:8000,0:spatial_incr:3200);
[i_length, j_length]=size(X);

for s = 1:NumberofAttackers
 Z = 0*X;
 for i = 1:i_length
 for j = 1:j_length
 point_to_evaluate = [X(i,j),Y(i,j)];
 attacker_position = x_a{s}(time_index, 1:2);
 Z(i,j) =

feval(str2func(CONSTANTS.ATTACKER_HIT_RATE_FUNCTION),
 s,...
 point_to_evaluate,...
 attacker_position);
 end
 end
 mesh(X,Y,Z);
end

for s = 1:NumberofDefenders
 Z = 0*X;
 for i = 1:i_length
 for j = 1:j_length
 point_to_evaluate = [X(i,j),Y(i,j)];
 defender_position = x_d{s}(time_index, 1:2);
 defender_heading = x_d{s}(time_index,4);
 attacker_positions = cell(1,CONSTANTS.ATTACKERS.Na);
 for a = 1:CONSTANTS.ATTACKERS.Na
 attacker_positions{a} = x_a{a}(time_index, 1:2);
 end

 63

 Z(i,j) =
feval(str2func(CONSTANTS.DEFENDER_HIT_RATE_FUNCTION),

 s,....
 point_to_evaluate,...
 defender_position,...
 defender_heading,...
 attacker_positions,...
 CONSTANTS.ATTACKERS.Na);
 end
 end
 mesh(X,Y,Z);
end

%---
for s = 1:NumberofAttackers
 cline2D(x_a_i{s}(:,1),x_a_i{s}(:,2),q{s}(:),'Cool');
end
cline2D(x_0_a_i(:,1),x_0_a_i(:,2),p(:),'Autumn');

colormap('jet');
for s = 1:NumberofDefenders
 plot(x_d_a_i{s}(:,1), x_d_a_i{s}(:,2),'g', 'LineWidth',3);
end
%---

 64

%--
% File: Result_Plots.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description: Plot all trajectories
% Inputs: None
% Outputs: None
%--

global CONSTANTS OFFLINE_TRAJECTORIES ...
 PDF_VALUES MESHED_PDF_VALUES...
 DISCRETIZATION_VALUES MESHED_DISCRETIZATION_VALUES ...
 DIFFERENTIATION_MATRICES ...
 INTEGRATION_WEIGHTS MESHED_INTEGRATION_WEIGHTS;

NumberofAttackers = CONSTANTS.ATTACKERS.Na;
NumberofDefenders = CONSTANTS.Ns;

%---
% Plot a_i trajectories
%---
figure
view(2)
hold on
 for s = 1:NumberofAttackers
 cline2D(x_a_i{s}(:,1),x_a_i{s}(:,2),q{s}(:),'Cool');
 end
for s = 1:NumberofDefenders
 plot(x_d_a_i{s}(:,1), x_d_a_i{s}(:,2),'g');
end
cline2D(x_0_a_i(:,1),x_0_a_i(:,2),p(:),'Autumn');
%---
figure
hold on
plot(x_0_a_i(:,3), p(:),'b')
for s = 1:NumberofAttackers
 plot(x_a_i{s}(:,3),q{s}(:),'r');
end

 65

%--
% File: cline2D.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description:
% - This function plots a 3D line (x,y,z) encoded with scalar color
% - data (c) using the specified colormap (default=jet);
% - SYNTAX: h=cline2D(x,y,z,c,colormap);
% - DBE 09/03/02
% Inputs:
% Outputs:
%--
% Edited by CLW, 2012, to make 2D, and to make spline work when entries
% are identical
function h=cline2D(x,y,c,cmap);

if nargin==0 % Generate sample data...
 x=linspace(-10,10,101);
 y=2*x.^2+3;
 z=sin(0.1*pi*x);
 c=exp(z);
 w=z-min(z)+1;
 cmap='jet';
elseif nargin<3
 fprintf('Insufficient input arguments\n');
 return;
elseif nargin==3
 cmap='jet';
end

cmap=colormap(cmap);% Set colormap

% Generate range of color indices that map to cmap
yy=linspace(0,1,size(cmap,1));
cm = spline(yy,cmap',c);% Find interpolated colorvalue
cm(cm>1)=1;
cm(cm<0)=0;

% Lot line segment with appropriate color for each data pair...
for i=1:length(x)-1

h(i)=line([x(i) x(i+1)],[y(i) y(i+1)],
'color',[cm(:,i)],'LineWidth',2);

end

return

 66

%--
% File: Full_Beta_Attacker_Hit_Rate.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description: Defines full beta attacker hit rate function
% Inputs: attacker_index, point_to_evaluate, attacker_position
% Outputs: rate
%--
function rate = Full_Beta_Attacker_Hit_Rate(attacker_index,...
 point_to_evaluate,...
 attacker_position)

global CONSTANTS

alpha = CONSTANTS.ATTACKER_HIT_RATE{attacker_index}.alpha;
beta = CONSTANTS.ATTACKER_HIT_RATE{attacker_index}.beta;
c1 = CONSTANTS.ATTACKER_HIT_RATE{attacker_index}.c1;
c2 = CONSTANTS.ATTACKER_HIT_RATE{attacker_index}.c2;

x_star = (alpha-1)/(alpha+beta-2); %point of function maximization
normalizing_constant = 1/betapdf(x_star, alpha, beta);
distance = c2*norm(attacker_position-point_to_evaluate);

if distance < 1
 rate = c1*normalizing_constant*betapdf(distance, alpha, beta);
else
 rate = 0;
end

 67

%--
% File: FOV_Defender_Hit_Rate_logn_withdivider
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description: Defines defender hit rate function
% Inputs: defender_index, point_to_evaluate, defender_position,
% defender_heading, attacker_positions, NumberofAttackers
% Outputs: rate
%--
function rate = FOV_Defender_Hit_Rate_logn_withdivider

 (defender_index,...
 point_to_evaluate,...
 defender_position,...
 defender_heading,...
 attacker_positions,...
 NumberofAttackers)

global CONSTANTS

alpha_theta = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.alpha_theta;
beta_theta = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.beta_theta;
mu_r = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.mu_r;
sigma_r = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.sigma_r;
max_angle = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.max_angle;
normalizing_constant_r =
CONSTANTS.DEFENDER_HIT_RATE{defender_index}.normalizing_constant_r;
rho = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.rho;
sigma = CONSTANTS.DEFENDER_HIT_RATE{defender_index}.sigma;

Attention_Dividing_Sum = 1;
%We want the hit rate to stay constant for one attacker, but decrease
%proportionate to additional nearby attackers. This can be accomplished
%by the following shenanigans: If there is just one attacker the
%attention dividing sum is one. if more attackers, the nearest attacker
%is automatically counted as the 1. then each additional attacker is
%added on.

if NumberofAttackers>1
 %first need to figure out which attacker is nearest.
 distance = norm(attacker_positions{1,1}(:)-defender_position(:));
 index_of_min=1;
 for i=2:NumberofAttackers
 if norm(attacker_positions{1,i}(:)-

defender_position(:))<distance;
 distance = norm(attacker_positions{1,i}(:)-

defender_position(:));
 index_of_min = i;
 end
 end
 for i=1:NumberofAttackers
 if i~=index_of_min
 distance = norm(attacker_positions{1,i}(:)-

defender_position(:));
 Attention_Dividing_Sum = Attention_Dividing_Sum +

normcdf(rho-distance, 0, sigma);

 68

 end
 end
end

distance = norm(point_to_evaluate-defender_position);

f_r = normalizing_constant_r*lognpdf(distance,mu_r, sigma_r);

angle_of_point = atan2(point_to_evaluate(2)-defender_position(2),...
 point_to_evaluate(1)-defender_position(1));

defender_heading = mod(defender_heading,2*pi); %mod so it's easier

% adjust heading to fit into atan2's format for polar coordinates
if defender_heading>pi
 defender_heading=defender_heading-2*pi;
end

%angle_of_point
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% There's a discontinuity at pi/-pi. The following cases deal
% with that.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if pi-max_angle<=defender_heading && defender_heading<=pi
 if -pi<=angle_of_point && angle_of_point<=-pi+max_angle
 angle_of_point = angle_of_point+2*pi;
 end
end
if -pi<=defender_heading && defender_heading<=-pi+max_angle
 if pi-max_angle<=angle_of_point && angle_of_point<=pi
 angle_of_point = angle_of_point-2*pi;
 end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

delta_theta = (abs(defender_heading-
angle_of_point)+max_angle)/(2*max_angle);
if (delta_theta>0 && delta_theta<1)
 x_star = (alpha_theta-1)/(alpha_theta+beta_theta-2); %point of
function maximization
 normalizing_constant = 1/betapdf(x_star, alpha_theta, beta_theta);
 f_theta = normalizing_constant*betapdf(delta_theta,alpha_theta,
beta_theta);
else
 f_theta=0;
end

rate = f_r*f_theta/Attention_Dividing_Sum;

 69

%--
% File: Calculate_Methods.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description:
% - This file is problem independent and should never have to be
% - edited, except to add more methods.
% - This function creates differentiation weights and integration
% - weights for a given method. It also creates the arrays for the
% - discretized values of the variables. It therefore accesses data
% - sent from the Problem File, by using the global CONSTANTS. The
% - weights it creates are problem specific; they do not have to be
% - renormalized for the variable intervals.
% Inputs: Discretization, Methods
% Outputs: None
%--
% © 2012, CLAIRE WALTON. Some Rights Reserved.
%==
% Notes
% 'Discretization' should be an array with the values for how fine
% the discretization is for time and parameter space.
% E.g. in this case discretization [5,9,9] would run the simulation for
% 5 time steps and a 9x9 parameter space.
%
% 'Methods' should be an array with the same dimension as
% Discretization. Each entry is the method used for each discretization
% variable.
% Method 0: Euler
% Method 1: Pseudospectral with lgl points
%==
function Calculate_Methods(Discretization, Methods)

global CONSTANTS OFFLINE_TRAJECTORIES ...
 JOINT_PDF MESHED_JOINT_PDF...
 DISCRETIZATION_VALUES MESHED_DISCRETIZATION_VALUES ...
 DIFFERENTIATION_MATRICES ...
 INTEGRATION_WEIGHTS MESHED_INTEGRATION_WEIGHTS

%-----------------------------------
% Compute details for Time Domain
%-----------------------------------

 %-----------------------------------%
 % Note %
 % Currently, the time domain is %
 % being calculated with N+1, but %
 % parameter space is using N. %
 % This was inherited from previous %
 % code and will probably be changed.%
 %-----------------------------------%

if Methods(1)==0
 disp('--')
 disp('Methods:');
 disp('Time: Euler');

 70

 [Dn, Time_Array, Weights]=euldiff(Discretization(1));
end

if Methods(1)==1
 disp('--')
 disp('Methods:');
 disp('Time: Pseudospectral with Legendre Points');
 [Dn, Time_Array, Weights]=legdiff(Discretization(1));
% Get differentiation matrix, legendre points, and quadrature weights
end
 %-----------Transformation----------%
 % Have to transform these from the %
 % interval [-1,1] to [T0,TF]. Equiv %
 % to u = (1/2)(TF-T0)t+(1/2)(TF+TO) %
 %-----------------------------------%
T0=CONSTANTS.Time.T0;
TF=CONSTANTS.Time.TF;
DISCRETIZATION_VALUES{1} = .5*(TF+T0)+.5*(TF-T0).*Time_Array;
 % cell array, DISCRETIZATION_VALUES{1} is the array of time points
DIFFERENTIATION_MATRICES{1} = (2/(TF-T0)).*Dn;
 % cell array, first element is Dn for time.
INTEGRATION_WEIGHTS{1} = .5*(TF-T0).*Weights;
 % cell array, first element is integration weights for time

%-----------------------------------
% Compute details for Parameter Space
%-----------------------------------
Size=CONSTANTS.ParameterSpace.Dimension+1;
 % i.e. length (Discretization)
for i=2:Size

 if Methods(i)==0
 str=['Parameter ',num2str(i-1), ': Euler'];
 disp(str);
 [Dn, Parameter_Array, Weights]=euldiff(Discretization(i));
 end

 if Methods(i)==1
 str=['Parameter ',num2str(i-1),

': Pseudospectral with Legendre Points'];
 disp(str);
 [Dn, Parameter_Array, Weights]=legdiff(Discretization(i));
% Get differentiation matrix, legendre points, and quadrature weights
 end

 W0=CONSTANTS.ParameterSpace.W0(i-1);
 WF=CONSTANTS.ParameterSpace.WF(i-1);
 DISCRETIZATION_VALUES{i} = .5*(WF+W0)+.5*(WF-W0).*Parameter_Array;
% cell array, DISCRETIZATION_VALUES{1} is the array of time points

 DIFFERENTIATION_MATRICES{i} = (2/(WF-W0)).*Dn;
 % cell array, first element is Dn for time.

 INTEGRATION_WEIGHTS{i} = .5*(WF-W0).*Weights;
 % cell array, first element is integration weights for time

 71

end
disp('--')

%%%%%Create meshed values for multiple attackers%%%%

% there is no mesh for the time domain, but it's nice to keep the
% dimension numbers matching the unmeshed values
MESHED_DISCRETIZATION_VALUES{1}=[];
MESHED_INTEGRATION_WEIGHTS{1}=[];

% This creates the meshes for evaluating every permutation of
% discretization values. The objective function still needs to have a
% nested for loop iterating through the two meshes. Each i-th column
% of the cell is the value for the i-th attacker. Each row is a unique
% permutation of Na values. Equivalent meshes are created for the
% integration weights to keep track of which weights need to be used
% for each permutation. To integrate, take the product over all Na
% columns.

for i=2:Size
% first cell arrays are used to trick ndgrid into outputting the right
% dimension grid
 discretization_values=cell(1,CONSTANTS.ATTACKERS.Na);

 integration_weights=cell(1,CONSTANTS.ATTACKERS.Na);

 if CONSTANTS.ATTACKERS.Na>1
 [discretization_values{1,:}] =

ndgrid(DISCRETIZATION_VALUES{i});
 [integration_weights{1,:}] = ndgrid(INTEGRATION_WEIGHTS{i});
 else
 discretization_values{1,:} = DISCRETIZATION_VALUES{i};
 integration_weights{1,:} = INTEGRATION_WEIGHTS{i};
 end
% then everything is reshaped to reduce notational confusion. While
% the meshgrid outputs Na Na-dimensional arrays, these can be indexed
% through and reread as Na one-dimensional vectors. This creates a
% matrix with the dimensions (parameter_length^Na, Na)
 MESHED_DISCRETIZATION_VALUES{i} =

zeros(length(discretization_values{1,1}(:)), ...
 CONSTANTS.ATTACKERS.Na);
 MESHED_INTEGRATION_WEIGHTS{i} =

zeros(length(discretization_values{1,1}(:)), ...
 CONSTANTS.ATTACKERS.Na);
 for s=1:CONSTANTS.ATTACKERS.Na
 MESHED_DISCRETIZATION_VALUES{i}(:,s) =

discretization_values{1,s}(:);
 MESHED_INTEGRATION_WEIGHTS{i}(:,s) =

integration_weights{1,s}(:);
 end
end

 72

%--
% File: euldiff.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description:
% - This function calculates the differentiation matrix Dn that is
% - obtained by using forward Euler's method on n equally spaced
% - points. These values are calculated over the interval [-1,1] and
% - need to be transformed to the interval of the problem. Note that
% - this does not return a square matrix. It returns a (N-1)xN matrix
% Inputs: N
% Outputs: Dn, x, w
%--
% © 2012, CLAIRE WALTON. Some Rights Reserved.
%==
function [Dn,x,w]=euldiff(N);
h=2/(N-1);
x = (-1:h:1)';
w = ones(N,1).*h;
w(N,1)=0;
v1=ones(1,N-1);
v2=-1*ones(1, N);
temp=(diag(v1,1)+diag(v2))./h;
Dn = temp(1:N-1,:);

 73

%--
% File: legdiff.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description:
% - This function calculates the differentiation matrix Dn that is
% - obtained by differentiating the Lagrange Polynomials at the
% - Legendre-Gauss-Lobatto (LGL) points. It's zero on the main
% - diagonal except at l=k=1, where Dn(1,1)= n(n+1)/4; and at l=k=n;
% - where Dn(n,n)=-n(n+1)/4. n= no of LGL points. For the other LGL
% - points l (~=)k, we have Dn(l,k)= Ln(xl)/Ln(xk)*(1/xl-xk).
% - This routine is part of DIDO Version 0.1
% - Written by Fariba Fahroo, edited by I. Michael Ross
% - Major subfunctions written by W. Gragg
% - Naval Postgraduate School, Monterey, CA 93943
% Inputs: n
% Outputs: Dn, x, w
%--
function [Dn,x,w]=legdiff(n);

[x w]=lobatto(n);
x=sort(x);
% initialize Dn
Dn=zeros(n);
Dn(1,1)=-(n-1)*n/4;
Dn(n,n)=n*(n-1)/4;

% Calculate the legendre polynomials at xi.
p=0*eye(n);
for i=1:n; s=x(i); p(i,1)=1; p(i,2)=s;
for j=2:n-1; p(i,j+1)=((2*j-1)*s*p(i,j)-(j-1)*p(i,j-1))/j; end; end;

% Fill out the rest of matrix Dn.
for l=1:n; for k=1:n;
if l~=k,
Dn(l,k)=p(l,n)/(p(k,n)*(x(l)-x(k)));
end;
end;end;

%====================================
function [x,w] = lobatto(n,a,b)

% [x w] = lobatto(n) or [x w] = lobatto(n,alpha,beta):
%
% Computes abscissa and weights for the n-point Gauss-Jacobi-Lobatto
% quadrature formula using the method of Gene H. Golub, Some modified
% matrix eigenvalue problems, SIAM Rev. 15 (1973) 318-334. Another
% early algorithm for this is by David Galant, An implementation of
% Christoffel's formula in the theory of orthogonal polynomials, Math.
% Comp. 25 (1971) 111-113. All such algorithms should be "reviewed",
% in light of recent improvements in tqr and Cholesky LR algorithms.
% But, this algorithm "ain't bad".
% Copyright (c) 23 August 1997 by Bill Gragg. All rights reserved.

% lobatto calls mxt, mxtj and tqr.

 74

% begin lobatto

if nargin < 2

a = 0; b = 0;
end

m = 2^(a + b + 1)*beta(a+1,b+1);
us = a == b;

n = n - 1; [a b] = mxtj(n,a,b); T = mxt(a,b);
I = eye(n); e = zeros(n,1); e(n) = 1;
c = (T + I)\e; c = c(n); d = (T - I)\e;
d = d(n); e = c - d; c = (c + d)/e;
d = sqrt(2/e); a(n+1) = c; b(n) = d;
[x u] = tqr(a,b); u = u'; w = m*u.^2;

% "Purify" formulas in the ultraspherical case.

if us

x = (x - flipud(x))/2; w = (w + flipud(w))/2;
end

% end lobatto
%---
function T = mxt(a,b,c)
% T = mxt(a,b,c) or T = mxt(a,b):
%
% T = mxt(a,b,c) is the TRIDIAGONAL MATRIX with diagonal elements
% a(1:n), subdiagonal elements b(1:n-1) and superdiagonal elements
% c(1:n-1).
% T = mxt(a,b) is the HERMITIAN tridiagonal matrix with diagonal
% elements real(a(1:n)) and subdiagonal elements b(1:n-1).
% Copyright (c) 1 December 1990 by Bill Gragg. All rights reserved.
% Revised 21 November 1992.

% mxt calls no extrinsic functions.

% begin mxt
if nargin < 3

a = real(a); c = b';
end

n = length(a); b = b(1:n-1);
c = c(1:n-1); z = zeros(n-1,1);

if n < 500

B = diag(b); B = [z' 0; B z];
C = diag(c); C = [z C; 0 z'];
T = diag(a); T = T + B + C;

else
T = zeros(n);

for k = 1:n-1

 75

T(k,k) = a(k); T(k+1,k) = b(k); T(k,k+1) = c(k);
end

T(n,n) = a(n);

end
% end mxt

%--
function [a,b] = mxtj(n,alpha,beta)

% [a b] = mxtj(n,alpha,beta), [a b] = mxtj(n,alpha), [a b] = mxtj(n),
% T = mxtj(n,alpha,beta), T = mxtj(n,alpha) or T = mxtj(n):
%
% mxtj(n,alpha,beta): T = mxt(a,b) is the Jacobi matrix whose
% characteristic polynomial p is (a nonzero scalar multiple of) the nth
% JACOBI polynomial.
% The eigenvalues of T are the abscissas of the nth order Gauss-
% Christoffel quadrature formula for the weight function ((1 –
% t)^alpha)((1 + t)^beta) on the interval - 1 < t < 1. The Gauss-
% Christoffel weights are m(0) times the squares of the first elements
% of the normalized eigenvectors of T, where m(0) = b(0)^2 = B(alpha +
% 1,beta + 1)2^(alpha + beta - 1) is the total mass.
% B is the beta function. The weight function is positive and
% integrable if alpha + 1 > 0 and beta + 1 > 0.
%
% mxtj(n,alpha) takes beta = alpha. p is the nth ULTRASPHERICAL
% polynomial, with weight function (1 - t^2)^alpha on the interval
% 1 < t < 1. Special cases are the CHEBYSHEV polynomial of the FIRST
% KIND, with alpha = - 1/2, and of the SECOND KIND, with alpha = 1/2.
%
% mxtj(n) takes alpha = beta = 0. p is the nth LEGENDRE polynomial,
% with weight function w(t) = 1 on the interval - 1 < t < 1. The
% quadrature formula here is originally due to Gauss. Christoffel
% generalized Gauss' formula to a wide class of weight functions.
% Because of this the Gauss-Christoffel weights are usually called
% Christoffel numbers.

% Copyright (c) 2 February 1991 by Bill Gragg. All rights reserved.

% mxtj calls mxt.

% begin mxtj
if nargin < 2

alpha = 0;
end;
if nargin < 3

beta = alpha;
end

a = alpha; b = beta; c = a + b; d = b - a;
s(1) = d/(c + 2); t(1) = (a + 1)*(b + 1)/(c + 2)^2/(c + 3);

if n > 2

d = c*d;

 76

n = (2:n)'; m = 2*n; mm = m - 1; mp = m + 1;
s(n) = d./(c + m)./(c + (m - 2));
t(n) = n.*(a + n).*(b + n).*(c + n)./(c + mm)./

((c + m).^2)./(c + mp);
end
a = s(:); b = 2*sqrt(t(:));
if nargout < 2

a = mxt(a,b);
end
% end mxtj

% Problems.
% 1. Relate T = mxt(a,b), with [a b] = mxtj(n,1/2), with the negative
% second difference matrix S = mxt(c,d), with [c d] = mxs(n).
%--
function [lam,U] = tqr(a,b,U)
% [lam u] = tqr(a,b) or [lam U] = tqr(a,b,U):
%
% [lam u] = tqr(a,b):
%
% The column lam contains the eigenvalues of the Hermitian tridiagonal
% matrix T = mxt(a,b) computed by one version of the (real symmetric)
% tqr algorithm with Wilkinson's shift. The column u contains the
% first elements of the eigenvectors of T normalized to be nonnegative
% and such that the eigenvectors are unit vectors. In practice this is
% an O(n^2) process. If u is omitted only the eigenvalues are
% computed. The computed eigenvalues are real and are sorted to be
% nonincreasing.
%
% [lam U] = tqr(a,b,U):
%
% This replaces the input U by UV with V a matrix of orthonormal eigen-
% vectors of T. If the input U is I the output U is V. If the input U
% is unitary with AU = UT then the output U is unitary with AU = UD and
% D = diag(lam).
%
% If the input U is e(1)' the output U is u'. If the input U is
% [e(1)'; e(n)'] the output U is [u'; v'] with v the column of last
% elements of the normalized eigenvectors. If the subdiagonal elements
% of T are all nonzero then the elements of v alternate in sign, at
% least mathematically.

% Copyright (c) 2 February 1991 by Bill Gragg. All rights reserved.
% Revised 15 July 1994.

% tqr calls sgn.
% begin tqr

% Ensure that T is Hermitian and shift b down one unit.
a = real(a); n = length(a); b = [0; b(:)]; b = b(1:n);

% Initialize U if required and execute a diagonal unitary similarity
% transformation to make T have nonnegative subdiagonal elements.

if nargout > 1

 77

if nargin < 3

U = zeros(1,n); U(1) = 1;
end

u = sgn(b); u = cumprod(u); U = U*diag(u);

end

b = abs(b);

% Scale the matrix up by a power of two to give nearly the widest
% possible exponent range.

scale = norm([a; b*sqrt(2)]);
scale = 2^(1024 - ceil(log2(scale)));
a = a*scale;
b = b*scale;

format compact % Temporary statements
maxscale = max(abs([a; b])); % for display.

% "Do tqr".
for m = n:-1:1

% Compute the mth eigenvalue.

for its = 0:10*n % its is the iteration index.

% Split the matrix if possible. This is also the termination test.

for k = m:-1:1

if k > 1
tol = abs(a(k-1)) + abs(a(k));

if tol + b(k) == tol

b(k) = 0; break
end

end
end

if k == m

break % b(m) = 0. a(m) is an eigenvalue.
else

if its == 10*n
 error('tqr iteration did not terminate in 10n steps!')
end

% Compute Wilkinson's shift w as a perturbation of the
% Rayleigh shift r = a(m). As the algorithm converges
% c = b(m) --> 0.
r = a(m); c = b(m); d = (r - a(m-1))/2; s = abs(d);

if c < s

s = c/s; t = 1 + sqrt(1 + s*s); t = c*s/t; % t < c;
else

 78

s = s/c; t = s + sqrt(1 + s*s); t = c/t; % t < c;
end

if d > 0

w = r + t;
else

w = r - t;
end

% Take a step of the tqr algorithm. There are many ways to
% implement the inner loop. We recently found the fastest
% known stable form in terms of flops. The form given here
% is elegant.

c = 1; s = 0; p = w - a(k); t = p;

for j = k:m-1

% Compute the two by two reflector stably and update b(j).
oldc = c; oldt = t; q = b(j+1); u = abs(p);

if q < u

v = q/u; r = sqrt(1 + v*v); b(j) = u*r*s;
u = sgn(p); c = u/r; s = v/r;

else
v = p/q; r = sqrt(1 + v*v); b(j) = q*r*s;
u = 1; c = v/r; s = u/r;

end

% Update p, t, a(j), and U(:,j:j+1) if required.
p = c*(w - a(j+1)) - s*q*oldc; t = c*p;
a(j) = a(j+1) + t - oldt;

if nargout > 1

i = j:j+1; U(:,i) = U(:,i)*[-c s; s c];
end

end

% Update b(m), a(m), and U(:,m) if required.
b(m) = abs(p)*s; a(m) = w - t; c = sgn(p);

if nargout > 1

U(:,m) = - U(:,m)*c;
end

end

end

end

% Sort and prepare the output.
[a p] = sort(-a); lam = - a/scale;

if nargout > 1

U = U(:,p); u = U(1,:)';

 79

if nargin < 3

u = abs(u); U = u';
else

u = sgn(u); U = U*diag(u');
end

end

% end tqr

%---
function W = sgn(Z1,Z2)
% W = sgn(Z) or W = sgn(Z1,Z2):
%
% For z a complex number we define sgn z, the SIGNUM of z, as z/|z| if
% z ~= 0 and + 1 if z = 0. Thus sgn z is the same as matlab's sign z
% except when z = 0. We always have |sgn z| = 1, apart from rounding
% errors.
%
% With the first call W is the Schur (elementwise) sgn function of the
% complex matrix Z. With the second call we have W = |Z1|.*sgn(Z2);

% Copyright (c) 19 January 1991 by Bill Gragg. All rights reserved.
% Revised 29 May 1996.

% sgn calls no extrinsic functions.

% begin sgn
if nargin < 2

W = sign(Z1); W = W + (W == 0);
else

W = sign(Z2); W = W + (W == 0); W = abs(Z1).*W;
end

% end sgn

% Total flops (scalar case, see csgn): TBC

% Problem.
% 1. Compare this function experimentally with csgn. Compare with
% regard to both execution time and numerical stability. Is matlab
% computing sign correctly?
%==

 80

%--
% File: Run_Optimization.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description:
% - Run_Optimization functions as a module that organizes an snopt call
% - for both searching and herding problem
% - Runs on general form agreed on for objective function
% Inputs: Problem_Info
% Outputs: x, F, xmul, Fmul, INFO, run_time
%--
% © 2012, CLAIRE WALTON. Some Rights Reserved.
%==
% Notes
% 1. This file should be run after all offline trajectories/pdfs are
% built
% 2. this file will compute sparsity patterns and run snopt
% 3. it will also split up the results into cost, control, and searcher
% trajectories
% 4. run_time will measure snopt optimization, and will not include
% parsing results
%
% Claire Walton, 01/19/12
%==
function [x,F,xmul,Fmul,INFO, run_time] =

Run_Optimization(Problem_Info)

global CONSTANTS OFFLINE_TRAJECTORIES JOINT_PDF
DISCRETIZATION_VALUES DIFFERENTIATION_MATRICES INTEGRATION_WEIGHTS

Example1.spc = which('Example1.spc');
snspec (Example1.spc);

[Objective_lower, Objective_upper, Dynamics_lower, Dynamics_upper,....
 Variables_lower, Variables_upper] =
feval(str2func(Problem_Info.Optimization_Bounds));

xlow = Variables_lower;
xupp = Variables_upper;

Flow = [Objective_lower; Dynamics_lower];
Fupp = [Objective_upper; Dynamics_upper];
% F is the vector of functions made by concatenating the objective
% function and the dynamics constraints; these are its bounds.

nF = length(Flow);
% dimension of the function vector F
n = length(xlow);
% number of state variables

x = feval(str2func(Problem_Info.Initial_Guess));
%x = zeros(n,1); %this is for no initial guess
xstate = zeros(n,1);
% This is some weird thing that indicates something about values of x.
% Setting it equal to zero seems to be related to no initial guess

 81

ObjAdd = 0;
% ObjAdd is a constant added to the objective function for printing
% purposes

ObjRow = 1;
% ObjAdd is the row in F containing the objective function. We will
% always use 1.

xmul = zeros(n,1);
% This has something to do with the vector of duals

Fstate = zeros(nF,1);
Fmul = zeros(nF,1);
% I don't know what these are

Start = 1;
% The value of Start has something to do with the meaningfulness
% of xstate and Fstate. Start = 1 knows they're not meaningful.

% [iGfun,jGvar] = feval(str2func(Problem_Info.Gradient_Sparsity));
% [iAfun,jAvar,A] = feval(str2func(Problem_Info.Linear_Gradient));

disp('--');
disp(' ');
disp(' running snJac ');
disp(' ');

[A,iAfun,jAvar,iGfun,jGvar] =
snJac(Problem_Info.UserFun,x,xlow,xupp,nF);

snseti ('Derivative option', 0);
snseti ('Major Iteration limit', 1000);
snsetr ('Major feasibility tolerance', 10^(-4))
snsetr ('Minor feasibility tolerance', 10^(-5))
snsetr ('Major optimality tolerance', 10^(-4))
snsetr ('Minor optimality tolerance', 10^(-5))

run_time = cputime;

disp('--');
disp(' ');
disp(' running snopt ');
disp(' ');

[x,F,xmul,Fmul,INFO] = snoptcmex(Start, x, xlow, xupp, xmul, xstate,

Flow, Fupp, Fmul, Fstate, ObjAdd, ObjRow, A,...
iAfun, jAvar, iGfun, jGvar,...
Problem_Info.UserFun);

run_time = cputime - run_time;
disp('--');
disp(' Run Time:');
disp(run_time);
disp('--');

 82

%--
% File: Run_Problem.m
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description:
% - This file is problem independent and should never have to be
% - edited. It organizes the calls to three other functions:
% - 1. The function to create the differentiation matrices and
% integration weights
% - 2. The function to build any attacker or hvu trajectories and pdfs
% - 3. The function the organizes the snopt call.
% - The purpose of the file is mostly to create the global variables.
% Inputs: Problem_Info, Discretization, Methods
% Outputs: Results, build_time, run_time, INFO
%--
% © 2012, CLAIRE WALTON. Some Rights Reserved.
%==
function [Results, build_time, run_time, INFO] =

Run_Problem(Problem_Info,Discretization, Methods)

global CONSTANTS OFFLINE_TRAJECTORIES ...
 PDF_VALUES MESHED_PDF_VALUES...
 DISCRETIZATION_VALUES MESHED_DISCRETIZATION_VALUES ...
 DIFFERENTIATION_MATRICES ...
 INTEGRATION_WEIGHTS MESHED_INTEGRATION_WEIGHTS

build_time = cputime;

disp('%%');
disp(Problem_Info.Name);
disp('--');
disp('Discretization:');
disp(Discretization);

Calculate_Methods(Discretization, Methods);
%---
% Creates DIFFERENTIATION_MATRICES, INTEGRATION_WEIGHTS, and
% DISCRETIZATION VALUES.
%
% DIFFERENTIATION_MATRICES and INTEGRATION_WEIGHTS are *cell arrays*
% with length given be length of discretization array. Each element of
% the cell array is the matrix/array given by calculated the
% differentiation matrix/integration array of the corresponding
% discretization variable.
% DISCRETIZATION_VALUES is also a cell array.
%---

feval(str2func(Problem_Info.Build_Simulation));
%---
% Contributes to the global variable TRAJECTORIES.
% TRAJECTORIES may include TRAJECTORIES.HVU and TRAJECTORIES.ATTACKERS,
% depending on the needs of the objective function userfun.
%---

feval(str2func(Problem_Info.Build_PDF));

 83

%---
% Creates the joint PDF, as per the options chosen in Problem file.
% Put results in global cell array JOINT_PDF
%---

build_time = cputime - build_time;
disp('--');
disp(' Build Time:');
disp(build_time);
disp('--');

[x,F,xmul,Fmul,INFO, run_time] = Run_Optimization(Problem_Info);
%---
% Organizes the snopt call and calls it. Run_Optimization will access
% the global variables created here.
%---

[Results] = ...

feval(str2func(Problem_Info.Interpret_Results), x,F,xmul,Fmul);

%--
% File: Uniform_PDF
% Compiler: MATLAB® v7.10.0.499 (R2010a)
% 64-bit (win64)
% Description: Forms uniform pdf
% Inputs: discretization_values, w0, wf
% Outputs: uniform PDF
%--
% © 2012, CLAIRE WALTON. Some Rights Reserved.
%==
function PDF = Uniform_PDF(discretization_values,w0,wf)

PDF = ones(1,length(discretization_values))./abs(wf-w0);

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 85

LIST OF REFERENCES

[1] A. Tiwari, “Small Boat and Swarm Defense: A Gap Study”, Thesis, Naval
 Postgraduate School, September 2008

[2] H. Chung, E. Polak, J. O. Royset, and S. Sastry, “On the Optimal
 Detection of an Underwater Intruder in a Channel Using Unmanned
 Underwater Vehicles”, Naval Research Logistics, Volume 58, Issue 8,
 pages 804–820, December 2011

[3] J. O. Royset, and H. Sato, “Route Optimization for Multiple Searchers”,
 Naval Research Logistics, Volume 57, Issue 8, pages 701–717,
December 2010

[4] J. S. Jang, and C. J. Tomlin, “Control Strategies in Multi-Player Pursuit
 and Evasion Game”, AIAA Guidance, Navigation, and Control Conference
 and Exhibit, August 2005

[5] V. Shaferman, and Y. Oshman, “Cooperative Interception in a Multi-
 Missile Engagement”, AIAA Guidance, Navigation, and Control
 Conference, August 2009

[6] H. S. Shin, “Study on Cooperative Missile Guidance for Area Air Defence”,
 PhD Thesis, http://dspace.lib.cranfield.ac.uk/handle/1826/6934, Cranfield
 University, 2010

[7] N. Rozen, “Sensor-Interceptor Operational Policy Optimization for
 Maritime Interdiction Missions”, Thesis, Naval Postgraduate School, 2009

[8] R. Ghabcheloo, I. Kaminer, A. P. Aguiar, and A. Pascoal, “A General
 Framework for Multiple Vehicle Time-Coordinated Path Following Control”,
 American Control Conference, 2009

[9] C. Walton, “Performance Criterion for Multiple Agent Interception

Scenarios”, University of California, Santa Cruz, June 21, 2012

[10] P. Zarchan, “Tactical and Strategic Missile Guidance”, Fifth edition,

Reston, VA, American Institute of Aeronautics and Astronautics Inc., 2007

 86

THIS PAGE INTENTIONALLY LEFT BLANK

 87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Chairman, Code ME

Department of Mechanical and Aerospace Engineering
Naval Postgraduate School
Monterey, California

4. Professor Isaac I. Kaminer, Code MAE/Ka
Department of Mechanical and Aerospace Engineering
Naval Postgraduate School
Monterey, California

5. Associate Professor Johannes O. Royset, Code OR
Department of Operations Research
Naval Postgraduate School
Monterey, California

6. Professor Yeo Tat Soon
Temasek Defense Systems Institute
National University of Singapore
Singapore

7. Ms Tan Lai Poh
Temasek Defense Systems Institute
National University of Singapore
Singapore

8. Mr William Lau
CTO, DSO National Laboratories
Singapore

	I. INTRODUCTION
	A. PROBLEM STATEMENT
	B. OBJECTIVES
	C. LITERATURE REVIEW
	D. THESIS ORGANIZATION

	II. METHODOLOGY
	A. SCENARIO
	B. SIMULATION
	1. High Value Unit (HVU)
	2. Attackers
	3. Defenders
	4. Cost Function

	C. SIMULATION PARAMETERS
	1. Guidance Laws
	a. Pursuit Guidance
	b. PN Guidance

	2. Number of Defenders
	3. Speed Ratio
	4. Test Matrix

	III. RESULTS ANALYSIS
	A. SIMULATION RESULTS
	1. Guidance Strategies
	2. Number of Defenders
	3. Speed Ratio

	IV. CONCLUSION AND RECOMMENDED FUTURE WORK
	A. CONCLUSION
	B. RECOMMENDED FUTURE WORK
	1. Other Guidance Methods or Strategies
	2. Different Engagement Scenarios
	3. Intent Recognition
	4. Hit Rate Function Modeling

	APPENDIX A. MATLAB® SIMULATION CODE
	A. SIMULATION RUN SCRIPT FILES
	B. ATTACKER & DEFENDER TRAJECTORY GENERATION CODE
	C. PERFORMANCE RELATED FUNCTIONS

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

